• Title/Summary/Keyword: Human Body Parsing

Search Result 2, Processing Time 0.019 seconds

3D Clothes Modeling of Virtual Human for Metaverse (메타버스를 위한 가상 휴먼의 3차원 의상 모델링)

  • Kim, Hyun Woo;Kim, Dong Eon;Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.638-653
    • /
    • 2022
  • In this paper, we propose the new method of creating 3D virtual-human reflecting the pattern of clothes worn by the person in the high-resolution whole body front image and the body shape data about the person. To get the pattern of clothes, we proceed Instance Segmentation and clothes parsing using Cascade Mask R-CNN. After, we use Pix2Pix to blur the boundaries and estimate the background color and can get UV-Map of 3D clothes mesh proceeding UV-Map base warping. Also, we get the body shape data using SMPL-X and deform the original clothes and body mesh. With UV-Map of clothes and deformed clothes and body mesh, user finally can see the animation of 3D virtual-human reflecting user's appearance by rendering with the state-of-the game engine, i.e. Unreal Engine.

Keypoints-Based 2D Virtual Try-on Network System

  • Pham, Duy Lai;Ngyuen, Nhat Tan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.186-203
    • /
    • 2020
  • Image-based Virtual Try-On Systems are among the most potential solution for virtual fitting which tries on a target clothes into a model person image and thus have attracted considerable research efforts. In many cases, current solutions for those fails in achieving naturally looking virtual fitted image where a target clothes is transferred into the body area of a model person of any shape and pose while keeping clothes context like texture, text, logo without distortion and artifacts. In this paper, we propose a new improved image-based virtual try-on network system based on keypoints, which we name as KP-VTON. The proposed KP-VTON first detects keypoints in the target clothes and reliably predicts keypoints in the clothes of a model person image by utilizing a dense human pose estimation. Then, through TPS transformation calculated by utilizing the keypoints as control points, the warped target clothes image, which is matched into the body area for wearing the target clothes, is obtained. Finally, a new try-on module adopting Attention U-Net is applied to handle more detailed synthesis of virtual fitted image. Extensive experiments on a well-known dataset show that the proposed KP-VTON performs better the state-of-the-art virtual try-on systems.