• Title/Summary/Keyword: Human Body Motion

Search Result 417, Processing Time 0.029 seconds

Human-like Whole Body Motion Generation of Humanoid Based on Simplified Human Model (단순인체모델 기반 휴머노이드의 인간형 전신동작 생성)

  • Kim, Chang-Hwan;Kim, Seung-Su;Ra, Syung-Kwon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.287-299
    • /
    • 2008
  • People have expected a humanoid robot to move as naturally as a human being does. The natural movements of humanoid robot may provide people with safer physical services and communicate with persons through motions more correctly. This work presented a methodology to generate the natural motions for a humanoid robot, which are converted from human motion capture data. The methodology produces not only kinematically mapped motions but dynamically mapped ones. The kinematical mapping reflects the human-likeness in the converted motions, while the dynamical mapping could ensure the movement stability of whole body motions of a humanoid robot. The methodology consists of three processes: (a) Human modeling, (b) Kinematic mapping and (c) Dynamic mapping. The human modeling based on optimization gives the ZMP (Zero Moment Point) and COM (Center of Mass) time trajectories of an actor. Those trajectories are modified for a humanoid robot through the kinematic mapping. In addition to modifying the ZMP and COM trajectories, the lower body (pelvis and legs) motion of the actor is then scaled kinematically and converted to the motion available to the humanoid robot considering dynamical aspects. The KIST humanoid robot, Mahru, imitated a dancing motion to evaluate the methodology, showing the good agreement in the motion.

  • PDF

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

Human Motion Control Using Dynamic Model (동력학 모델을 이용한 인체 동작 제어)

  • Kim, Chang-Hoe;O, Byeong-Ju;Kim, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

Human Body Motion Tracking Using ICP and Particle Filter (반복 최근접점와 파티클 필터를 이용한 인간 신체 움직임 추적)

  • Kim, Dae-Hwan;Kim, Hyo-Jung;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.977-985
    • /
    • 2009
  • This paper proposes a real-time algorithm for tracking the fast moving human body. Although Iterative closest point (ICP) algorithm is suitable for real-time tracking due to its efficiency and low computational complexity, ICP often fails to converge when the human body moves fast because the closest point may be mistakenly selected and trapped in a local minimum. To overcome such limitation, we combine a particle filter based on a motion history information with the ICP. The proposed human body motion tracking algorithm reduces the search space for each limb by employing a hierarchical tree structure, and enables tracking of the fast moving human bodies by using the motion prediction based on the motion history. Experimental results show that the proposed human body motion tracking provides accurate tracking performance and fast convergence rate.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Face and Hand Activity Detection Based on Haar Wavelet and Background Updating Algorithm

  • Shang, Yiting;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • This paper proposed a human body posture recognition program based on haar-like feature and hand activity detection. Its distinguishing features are the combination of face detection and motion detection. Firstly, the program uses the haar-like feature face detection to receive the location of human face. The haar-like feature is provided with the advantages of speed. It means the less amount of calculation the haar-like feature can exclude a large number of interference, and it can discriminate human face more accurately, and achieve the face position. Then the program uses the frame subtraction to achieve the position of human body motion. This method is provided with good performance of the motion detection. Afterwards, the program recognises the human body motion by calculating the relationship of the face position with the position of human body motion contour. By the test, we know that the recognition rate of this algorithm is more than 92%. The results show that, this algorithm can achieve the result quickly, and guarantee the exactitude of the result.

Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction (휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Generation and Animation of Optimal Robot Joint Motion data using Captured Human Motion data (인체모션 데이터 획득 장치와 최적화 기법을 사용한 로봇운동 데이터 생성과 애니메이션)

  • Bae, Tae Young;Kim, Young Seog
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.558-565
    • /
    • 2013
  • This paper describes a whole-body (human body's) motion generation scheme for an android robot that uses motion capture device and a nonlinear constrained optimization method. Because the captured motion data are based on global coordinates and the actors have different heights and different upper-lower body ratios, the captured motion data cannot be used directly for a humanoid robot. In this paper, we suggest a method for obtaining robot joint angles, which allow the resultant robot motion to be as close as possible to the captured human motion data, by applying a nonlinear constrained optimization method. In addition, the results are animated to demonstrate the similarity of the motions.

Motion Animation using orthogonal parameters (직교 파라미터 조합을 이용한 모션 애니메이션)

  • 이칠우;진철영;배기태;정민영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper has expressed human's motion data into orthogonal parameters in low dimension, and created new motion data through this. We have reconstructed a new model consisting of orthogonal parameters from dividing human body data into three parts - hand, leg, and body to make new motions. Mixing these parts of body from different motions has leaded to new good motion data. It will be possible to use this motion editing not only for Animation Technology, but also for a three dimensional gesture recognition skill.

  • PDF

Motion Capture of the Human Body Using Multiple Depth Sensors

  • Kim, Yejin;Baek, Seongmin;Bae, Byung-Chull
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • The movements of the human body are difficult to capture owing to the complexity of the three-dimensional skeleton model and occlusion problems. In this paper, we propose a motion capture system that tracks dynamic human motions in real time. Without using external markers, the proposed system adopts multiple depth sensors (Microsoft Kinect) to overcome the occlusion and body rotation problems. To combine the joint data retrieved from the multiple sensors, our calibration process samples a point cloud from depth images and unifies the coordinate systems in point clouds into a single coordinate system via the iterative closest point method. Using noisy skeletal data from sensors, a posture reconstruction method is introduced to estimate the optimal joint positions for consistent motion generation. Based on the high tracking accuracy of the proposed system, we demonstrate that our system is applicable to various motion-based training programs in dance and Taekwondo.