• Title/Summary/Keyword: Human Behavior Simulation

Search Result 135, Processing Time 0.021 seconds

Light Scattering Analysis on Coagulation Detection with Magnetic Particles

  • Nahm, Kie B.
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.623-628
    • /
    • 2018
  • Clotting properties of human blood are important clinical information to monitor for patients with platelet and coagulation disorders. Most devices used to diagnose these disorders utilize blood plasma together with tissue factors and $Ca^{{+}{+}}$ additives. In some instruments, magnetic particles were mixed with blood samples and a rotating magnetic field was applied, resulting in the rotation of magnetic particles, which was probed by impinging light. The working principle seems obvious yet had not been investigated in depth. We modeled the collective behavior of light propagating through magnetic needles, aligned in the direction of the rotating external magnetic field, with scattering light analysis software. Simulation results indicated that the scattering pattern undergoes periodic undulations with respect to the slant angle of the magnetic needles. Also provided is a means of extracting meaningful information from the scattering measurement.

Analysis of the GOP Border security systems of the ROK Army by Using ABMS and NOLH design (ABMS와 NOLH을 이용한 한국군 GOP 경계시스템에 관한 분석)

  • Oh, Kyungtack
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.25-33
    • /
    • 2014
  • In this study, the border security problem of the ROK Army is examined by applying the agent-based modeling and simulation (ABMS) concept as well as its platform, MANA. Based on the approximately optimized behavior of the infiltrator obtained using genetic algorithm (GA), we evaluate the GOP border security system which consists of human resources, surveillance, as well as command and control (C2) systems. We use four measures of effectiveness (MOEs) to evaluate its performance, and we apply a near optimal latin hypercube (NOLH) design to deal with the large number of factors of interest in our model. By using a NOLH design, our simulation runs are implemented efficiently. We hope the results of this study provide valuable data for deciding the configuration of the border security system structure and the number of soldiers assigned in the platoon.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

A Study on the Behavior of Skid Gear During the Helicopter Autorotation (헬리콥터 오토로테이션시 착륙장치 거동에 관한 연구)

  • Choi, Hyung-Tai;Oh, Jung-Jin;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.746-753
    • /
    • 2012
  • ROK military helicopters are frequently exposed to the hazard situations due to the characteristic of operation. Especially, helicopter accident may lead to critical damage of human and structure. Accordingly, pilots have to train the autorotation procedures and learn the skill to prevent hard landing. In this paper, the behavior of skid gear subject to the helicopter autorotation was conducted by using numerical method. The computer simulation approach by using finite element method was employed to accomplish this goal. Additionally, the behavior of skid gear was evaluated for the different landing conditions. In conclusion, the maximum stress concentration was occurred at the attached area of skid cross-tube to the fuselage. Also, it was revealed that the most proper attitude was level landing to prevent hard landing.

Behavior and Injury Investigation of Reclined Occupants in Frontal Crash (정면충돌 시 편의자세 승객의 거동 및 상해 연구)

  • Youngju Jo;Changmin Beak;Seongho Kim;Kyeonghee Han;Kyungjin Kim;Jaeho Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.95-101
    • /
    • 2023
  • As the popularization of autonomous vehicles is anticipated, it is expected that the variety of passenger postures will diversify. However, the current vehicle safety system is expected to be inadequate for accommodating these diverse passenger postures, particularly in reclined positions where severe injuries have been reported in frontal collisions. Therefore, it is necessary to investigate the biomechanical responses and tolerances of occupants in reclined postures. In this study, the behavior and injuries of a Hybrid-III dummy model in a reclined position are analyzed through frontal collision sled simulations equipped with the semi-rigid seat provided by the previous study, three-point safety belt with pretensioner and load limiter, and airbag models. The results are evaluated by comparing thouse reponses with post-mortem human surrogate (PMHS) data, and the findings are expected to be applicable to the basic design of a new restraint system suitable for various postures in autonomous vehicles.

Dynamic Simulation on a Network Security Simulator using SSFNet (SSFNet을 이용한 네트워크 보안 시뮬레이터에서 동적 시뮬레이션 방법)

  • 박응기;윤주범;임을규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.101-106
    • /
    • 2004
  • Recently, a network defense simulator becomes essential in studying cyber incidents because the cyber terror become more and more interesting. The network defense simulator is a tool to estimate damages and an effectiveness of a defense mechanism by modeling network intrusions and defense mechanisms. Using this tool, users can find efficient ways of preventing a cyber terror and recovering from the damage. Previous simulators start the simulation after entire scenario has made and been loaded to simulation engine. However, in this way it can't model human judgement and behavior, and it can't simulate the real cyber terror very well. In this paper, we have added a dynamic simulation component to our previous network security simulator. This component improved accurate modeling of network intrusions and defense behaviors. We have also proposed new modified architecture of the simulation system. Finally we have verified correct simulation results from stammer worn simulation.

Verification of Automatic PAR Control System using DEVS Formalism (DEVS 형식론을 이용한 공항 PAR 관제 시스템 자동화 방안 검증)

  • Sung, Chang-ho;Koo, Jung;Kim, Tag-Gon;Kim, Ki-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • This paper proposes automatic precision approach radar (PAR) control system using digital signal to increase the safety of aircraft, and discrete event systems specification (DEVS) methodology is utilized to verify the proposed system. Traditionally, a landing aircraft is controlled by the human voice of a final approach controller. However, the voice information can be missed during transmission, and pilots may also act improperly because of incorrectness of auditory signals. The proposed system enables the stable operation of the aircraft, regardless of the pilot's capability. Communicating DEVS (C-DEVS) is used to analyze and verify the behavior of the proposed system. A composed C-DEVS atomic model has overall composed discrete state sets of models, and the state sequence acquired through full state search is utilized to verify the safeness and the liveness of a system behavior. The C-DEVS model of the proposed system shows the same behavior with the traditional PAR control system.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Dynamic Crowd Simulation by Emotion-based Behavioral Control of Individuals (개체의 감정기반 행동제어를 통한 동적 군중 시뮬레이션)

  • Ahn, Eun-Young;Kim, Jae-Won;Han, Sang-Hoon;Moon, Chan-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.1-9
    • /
    • 2009
  • In virtual environments, such as computer game and animation, we need to enhance naturalness of crowd simulation. So, we propose a method to generate dynamically moving crowd patterns by applying emotional factors to the individual characters of a crowd in the determination of their behavior. The proposed method mimics human behavior and controls each character in a group to decide its own path according to its individual status. And it is able to generate various moving patterns as a result of letting the individuals go to another group depending upon their conditions. In this paper, some temperament and feeling factors are defined and determination rules for calculating the emotional status are also proposed. Moreover we use a fuzzy theory for accurate representation of the ambiguous expressions such as feeling bad, feeling good and so on. Our experiments show that the suggested method can simulate virtual crowd in more natural and diverse ways.

A Survey on the Purchasing Behavior and Preference of Mountain Climbing Pants for the Development of Women's Functional Mountain Climbing Pants Patterns (여성용 기능성 등산용 팬츠 패턴 개발을 위한 등산용 팬츠의 구매 및 선호도 조사 연구)

  • Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.90-100
    • /
    • 2013
  • This study uses a survey questionnaire to identify the major customer age class of adult women who frequently mountain climb as well as analyze their purchasing behavior and preference of mountain climbing pants. The field survey, classified the types of mountain climbing pants, selected the types of mountain climbing pants that consumers preferred, and then analyzed the degrees of satisfaction for mountain climbing pants based on an evaluation of wearing. Specifically, the patterns of mountain climbing pants preferred by national brands and licensed brands were compared and analyzed. The validities of commercially available mountain climbing pants were analyzed through an evaluation of wearing comfort and an evaluation of wearing on a 3D simulation of the human body. The basic data for the development of mountain climbing pants are presented based on the results. The survey questionnaire results indicate that the major class of women consumers of mountain climbing goods was in the 40s to 50s; in addition, the types they most wore were straight type and functional cut type. The preferred brand was KOLONSPORT (which occupies a 21.2% market share), followed by THE NORTH FACE (13.0%), K2 (11.5%) and Kolping (10.0%). The main reason (26.8% of responses) that they preferred these brands was functionality. The difference in measurement of climbing pants patterns could be analyzed accurately in the pattern analysis, the wearing evaluation by the self-sonsory test and evaluation of wearing comfort through 3D simulation. The results of ANOVA on motions and items indicates that no significant difference was found among motions; however, a significant difference was recognized among items. A comparison of straight type and functional cut type showed that the functional cut type excelled slightly in wearing comfort.