• Title/Summary/Keyword: Human/System Interface

Search Result 783, Processing Time 0.022 seconds

Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web (차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발)

  • Song Yong-Uk;Hong June-Seok;Kim Woo-Ju;Lee Sung-Kyu;Youn Suk-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • While the existing Web focuses on the interface with human users based on HTML, the next generation Web will focus on the interaction among software agents by using XML and XML-based standards and technologies. The inference engine, which will serve as brains of software agents in the next generation Web, should thoroughly understand the Semantic Web, the standard language of the next generation Web. As abasis for the service, the W3C (World Wide Web Consortium) has recommended SWRL (Semantic Web Rule Language) which had been made by compounding OWL (Web Ontology Language) and RuleML (Rule Markup Language). In this research, we develop a backward chaining inference engine SMART-B (SeMantic web Agent Reasoning Tools -Backward chaining inference engine), which uses SWRL and OWL to represent rules and facts respectively. We analyze the requirements for the SWRL-based backward chaining inference and design analgorithm for the backward chaining inference which reflects the traditional backward chaining inference algorithm and the requirements of the next generation Semantic Web. We also implement the backward chaining inference engine and the administrative tools for fact and rule bases into Java components to insure the independence and portability among different platforms under the environment of Ubiquitous Computing.

  • PDF

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.