• Title/Summary/Keyword: Hull-propeller interaction

Search Result 33, Processing Time 0.022 seconds

Experimental Study on Manoeuvring Hydrodynamic Derivatives and Interaction Coefficients of Full Form Ship (비대선형의 조종 유체력 미계수 및 간섭 계수에 관한 실험적 연구)

  • 최명식;윤점동;이경우
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1994
  • In marine transportation of bulk cargoes such as crude oil. ore, coal etc., a lot of full form ship which have poor manoeuvrability were presented in many countries. Since ship manoeuvrability depends upon many parameters namely hydrodynamic derivatives, interference factors etc., as external forces, it is of great importance that we investigate these values of parameters on analysis of manoeuvrability. In this paper, we investigated and analyzed interaction coefficients among hull-propeller-rudder for a full form ship by captive model test in circulating water channel, and then compared with experimental results by PMM test. A tanker model ship which has 0.83 as block coefficient and MMG mathematical models were used in this experiment. Almost same tendencies were found in qualitative analysis, even though more serial experiments were demanded in quantitative analysis.

  • PDF

Numerical Analysis of the Wake of a Surface Ship Model Mounted in KRISO Large Cavitation Tunnel (KRISO 대형 캐비테이션터널 시험조건의 함정 모형선 반류에 대한 수치해석적 연구)

  • Park, Il-Ryong;Kim, Je-In;Kim, Ki-Sup;Ahn, Jong-Woo;Park, Young-Ha;Kim, Myoung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.494-502
    • /
    • 2016
  • The accurate assessment of hull-appendage interaction in the early design stage is important to control the inflow to the propeller plane, which can cause undesirable hydrodynamic effects in terms of cavitation phenomenon. This paper describes a numerical analysis for the flow around a fully appended surface ship model for which KRISO has carried out a model test in the Large Cavitation Tunnel(LCT). This numerical study was performed with the LCT model test in a complementary manner for a good reproduction of the wake distribution of surface ships. A second order accurate finite volume method provided by a commercial computational fluid dynamics(CFD) program was used to solve the governing Reynolds Averaged Navier-Stokes(RANS) equations, where the SST $k-{\omega}$ model was used for turbulence closure. The numerical results were compared to available LCT experimental data for validation. The calculations gave good predictions for the boundary layer profiles on the walls of the empty cavitation tunnel and the wake at the propeller plane of the fully appended hull model in the LCT.

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Experimental and Numerical Studies of the Flowfield around an Axisymmetric Body (축대칭 물체 주위유동의 실험적·수치적 연구)

  • Ahn, Jong-Woo;Song, In-Haeng;Park, Tae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.9-18
    • /
    • 1997
  • Experimental and numerical studies are carried out to investigate flow characteristics around an axisymmetric body with and without a compound propulsor. The effects of a compound propulsor are investigated as measuring the surface pressure distribution and the velocity profiles using LDV system in the cavitation tunnel of KRISO. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method. The standard k-${\varepsilon}$ turbulence model is adopted for turbulence closure. In order to calculate propeller-hull interaction, the induced velocity calculated by lifting surface theory is considered as the boundary condition at the propeller plane. The experimental data obtained in this study can provide a useful database for development and validation of CFD code.

  • PDF

A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters (동적위치제어용 스러스터 사이의 유체역학적 상호작용에 대한 수치해석 연구)

  • Jin, Doo Hwa;Lee, Sang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

An Experimental Evaluation of the Coanda Jet Applied High Efficient Rudder System for VLCC

  • Park, Bong-Joon;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • To keep the ocean environment from pollutions, strict international requirements on the controllability are arisen to the VLCC. Especially in low speed operations near the harbor, the VLCC is often supported by tug to replenish the insufficient rudder force. When water jet is blown to the flapped rudder, the Coanda effect induces a high-lift force by delaying stall and re-enforcing circulation in a large angle of attack (Lachmann 1961, Ahn 2003). Based on numerous research efforts, the rudder system supported by the Coanda effect was devised and its performances were evaluated in the towing tank for a large VLCC model. Hydrodynamic forces acting on the rudder system were measured with a water jet blowing on the rudder surface and compared with those acting on a conventional rudder. The effectiveness of the new rudder system was proven through an experimental evaluation.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Estimation of Icebreaking Forces and Failure Length of Ice Rubbles on Infinite Ice Sheet (무한 빙판에서의 쇄빙력과 파단 빙편의 크기 예측)

  • Choi, Kyung-Sik;Lee, Jin-Kyoung;Kim, Hyun-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Ice rubble pieces broken by the bow impact load and side hull of an icebreaking vessel usually pass along the ship's bottom hull and may hit the propeller/rudder or other stern structures causing serious damage to ship's hull . Therefore it is important to estimate the size of broken ice pieces during the icebreaking process. The dynamic interaction process of icebreaker with infinite ice sheet is simplified as a wedge type beam of finite length supported by elastic foundation. The wedge type ice beam is leaded with vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum dynamic bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a failure length of broken ice sheet given design parameters. The results are compared to Nevel(1961)'s analytical solution for static load and observed pattern of ice sheet failure onboard an icebreaker. Also by comparing computed failure length with the characteristic length, the meaning of ice rubble sizes is discussed.

Approximate Technique for Ship′s Manoeuvrabilily Prediction (선박조종성능 추정을 위한 근사적 기법에 관한 연구)

  • Ho-Young Lee;Sang-Sung Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.19-26
    • /
    • 1998
  • In this paper, we studied the Similar Ship(SS) concept[1,2] as a method to an experimental and semi-emperical approach for the estimation of hull hydrodynamic forces and hull-propeller-rudder interaction coefficients and used these methods to predict ship's manoeuvrability. The SS concept is adopted to use experimental data of prototype ships for manoeuvrability prediction of a new ship. The SS concept is composed of the key components as follows: existence of experimental data about prototype ship, availability of semi-emperical method for estimating the changes of hull force, a method to correct the prototype ship data. On the basis of these concepts, we attempted to simulate manoeuvrability at ballast and scantling draft conditions by making use of experimental data at full load draft condition and to simulate manoeuvrability of new ships by making use of experimental data for prototype. From present calculation, it was found that the present method can predict the ship's manoeuvrability accurately at early design stage.

  • PDF

A New Empirical Formula for Steering Gear Torque of Tankers by Statistical Analysis based on Sea Trial Data and Modified Lifting Line Theory (통계적 해석에 의한 유조선의 조타기 토오크 계산 경험식 개발)

  • D.I. Son;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • In this paper, an empirical formula to estimate the steering gear torque of a Tanker with a horn type rudder was developed by using the statistical analysis. The hydrodynamic characteristics of the horn type rudder in the free-stream condition were calculated by using the modified lifting line theory by Molland, and the interaction effects by propeller and hull were analyzed by the regression analysis of the sea-trial data of 32 vessels. The comparison with the delivered vessels' data shows that the formula can be used for predicting the steering gear torque at the initial design stage.

  • PDF