• 제목/요약/키워드: Hull temperature distribution

검색결과 20건 처리시간 0.025초

초저온 LNG선의 열설계에 관한 연구 (A Study on the Thermal Design of the Cryogenic LNG Carrier)

  • 김용모;고상철;천병일;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.1-10
    • /
    • 1993
  • This paper introduces the outline of hull structure to the sorts of LNG carrier briefly. Especially, explains in detail for the insulation system of Moss Rosenberg Verft spherical tank type LNG carrier. It is not easy task to calculate exactly the temperature distribution of hull because of very complicated structure of hull. Therefore, in this paper by the adequate modeling of the Moss Rosengerg spherical tank type LNG carrier, a program is developed which calculate the temperature distribution of every hull and estimate the heat influx from every hull and output the BOR according to the variation of atmospheric conditions on boyage.

  • PDF

MRV형 LNG선의 선체온도분포 및 증발률 산정에 관한 연구 (A Study on the Computation of Hull Temperature Distribution and Boil off Ratio of MRV Type LNG Carrier)

  • 천병일;김용모;김경근
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.986-996
    • /
    • 1994
  • Insulation system of LNG carrier has made important roles such as maintaining a proper Boil off Ratio(BOR) for the cargo and avoiding the excessive low temperature of the adjacent inner hull beyond the permissible limit. At the same time, safety and economy of the LNG transportation by the ship are connected with the performance of the insulation system. Also, thermal insulation system of LNG carrier is one of the most advanced technique with the structure analysis of tank, welding and assembling. In this study a computer program is developed to calculate the hull temperature distribution and BOR, which are important factors in thermal design for the Moss Rosenberg Verft spherical tank type LNG carrier. Detailed results for hhull temperature distribution close to LNG tank, BOR and the thickness effect of insulation material are reported in this paper in the range of standare design sea condition.

A Study of Hull Stress Monitoring System considering Thermal Effect

  • Shim, Chun-Sik;Kang, Joong-Kyoo;Heo, Joo-Ho
    • 한국항해항만학회지
    • /
    • 제32권2호
    • /
    • pp.121-126
    • /
    • 2008
  • This paper presents hull stress monitoring system installed in LNGC damaged by a Typhoon Elongation/contraction of removed areas has been assessed in terms of possible residual stress that will take place in replaced blocks when the applied load is removed. The bending moment of a vessel changes actually in terms of loss of longitudinal members and the change of weight distribution in repair procedure. The change of bending moment affects mainly in hull stress of longitudinal members. Hull stress monitoring system was installed on upper deck to prove LNGC stable in the criteria to be less than 40MPa during the period of repair procedure. A temperature measuring system was also installed to exclude the additional stress due to thermal effect from the measured hull stress. As a result, the hull stress was modified with the data measured by the temperature measuring system. This hull stress considering thermal effect was used as a guide stress to check the safety of LNGC during the period of repair procedure.

KC-1 Membrane LNG 탱크 단열시스템의 열해석에 관한 연구 (Thermal Analysis of Insulation System for KC-1 Membrane LNG Tank)

  • 정현원;김태현;김석순;심재우
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.91-102
    • /
    • 2017
  • Recently, a new type of LNG membrane Tank called the "KC-1 membrane LNG Tank" was developed by KOGAS (Korean Gas Corporation). It is necessary to estimate the temperature distribution of the hull structure and insulation system for this new LNG tank, as well as the BOR (Boil-Off Rate) when exposed to outside temperature conditions to ensure the integrity of the tank structure and limit LNG evaporation, from a safety evaluation point of view. In this study, temperature distribution calculations for the hull structure and insulation system of the KC1 membrane tank were compared by employing four numerical approaches under the IGC condition. Approaches 1-3 studied 2D simulations and approach 4 used a 3D numerical simulation. Approach 1 was calculated by in-house Excel VBA codes and the three other approaches utilized ANSYS Fluent. The BOR of approach 4, the 3D simulation case, for the IGC condition was 0.0986%/day.

Distribution of Chitinases in Rice (Oryza sativa L)Seed and Characterization of a Hull-Specific Chitinase

  • Baek, Je-Hyun;Han, Beom-Ku;Jo, Do-Hyun
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.310-315
    • /
    • 2001
  • The uneven distribution of acidic and basic chitinases in different parts of rice seed, and also the characterization of hull-specific chitinases, are reported here. After extraction of chitinases from polished rice, bran, and rice hulls, the chitinases were separated into acidic and basic fractions, according to their behavior on an anion exchanger column. Both fractions from different parts of rice seed showed characteristic activity bands on SDS-PAGE that contained 0.01% glycol chitin. The basic chitinases from rice hulls were further purified using chitin affinity chromatography. The chitinase, specific to rice hulls (RHBC), was 88-fold purified with a 1.3% yield. RHBC has an apparent molecular weight of 22.2 kDa on SDS-PAGE. The optimal pH and temperature were 4.0 and $35^{\circ}C$, respectively. With [$^3H$]chitin as a substrate, RHBC has $V_{max}$ of 13.51 mg/mg protein/hr and $K_m$ of 1.36 mg/ml. This enzyme was an endochitinase devoid of ${\beta}$-1,3-glucanase, lysozyme, and chitosanase activities.

  • PDF

알미늄 선루선(船樓선)의 열응력분석(熱應力分布) (Notes on the Thermal Stresses for Aluminum Superstructures)

  • 박선영
    • 대한조선학회지
    • /
    • 제3권1호
    • /
    • pp.33-45
    • /
    • 1966
  • The effect of thermal stress on a ship's hull is not considered to be serious by most naval architects. Frequently, however, cracking of hulls has been reported which occurred at sea while there were no external forces except the heat from the sun. Detailed investigations have been made of these reports and it has been reliably determined that the damage was initiated by solar heating. The author is not interested in all steel ship or in the applicability and validity of the formular itself, as it has already been proven by the experiments such as S.S. Boulder Victory. The author therefore proceeds directly to calculate the stress distribution on he hull and superstructure of the prototype model ship. These calculations are based on the experimental nonsymetrical temperature gradient data taken earlier on the Boulder Victory. The calculations were made principally to determine the extent of stresses which occurred on an all-steel ship in one case and secondly, those that occurred on a ship with a steel hull and an aluminum superstructure. From the calculations, the author expected the stress distribution of the two case would show distinctly different aspects, but the acquired results were very similar. Generally, at the point of junction of the steel hull and aluminum superstructure sharp peak stresses appeared. At the juncture of the superstructure and the main deck the ship with the aluminum superstructure registered almost 1000 psi more stress than did the ship with the all-steel construction. In the view of these findings, the author recommends to ship designers that pay particular attention to the point of junction of steel and aluminum plate. The author has proven that it is extremely important that a greater safety factor be used at the aluminum-steel junction point than at any other point. Although thermal effects cause high juncture-point stresses in all-steel ships, they are not nearly as critical as in ship constructed of two or more metals.

  • PDF

급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교 (Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period)

  • 이정혜
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션 (LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM)

  • 박범진;이희범;이신형;배준홍;이경원;정왕조;안상준
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

LNG선 Heating Coil의 설계를 위한 Cofferdam내 열정산 (Heat Flux Calculation for Thermal Equilibrium of Cofferdam in a LNG Carrier)

  • 허주호;이영범
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.98-106
    • /
    • 1998
  • 멤브레인형 가스운반선의 경우 화물창들 사이에 cofferdam을 두어 격리시키고 있는데 이 경우 극 저온 액체 화물의 영향으로 cofferdam 실내 온도는 약 $-40^{\circ}C$내외로 떨어지게 된다. 그 결과 cofferdam 및 화물창을 구성하는 bulkhead는 구조 부재로서의 허용 강도를 만족하는 온도를 유지할 수 없게 된다. 결국 heating system을 사용하여 cofferdam 실내 온도를 최소한 $5^{\circ}C$까지 올려야 하는데, 소요 pipe의 길이 산정을 위한 heat flux 산출과 pipe의 배치가 우선적으로 요청된다. 본 연구에서는 다양한 설계 조건에서의 cofferdam 내 heat flux를 각 compartment들 간의 연성 효과를 고려하여 구하고 이를 기존 계산서들과 비교 검토하여 그 타당성을 검증하였고 이를 토대로 heating system에 필요한 pipe의 길이를 산정하였다. 아울러 현재의 heating system의 대안으로 fin을 부착한 pipe로 구성된 heating coil system을 제시하고 그 효율을 비교하였다.

  • PDF

실험적 열적 물성치를 반영한 CCS 방열박스의 열전달 해석 (Thermal analysis of two main CCS(cargo containment system) insultaion box by using experimental thermal properties)

  • 최성웅;노정우;김무선;이우일
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.429-438
    • /
    • 2011
  • 본 논문에서는 Membrane형 LNG선의 구성 요소를 대상으로 단열창의 열적 분포를 알아보기 위해 극저온 상태에서부터 온도 별로 각 소재의 열적 물성치인 열전도도(thermal conductivity)를 실험을 통해서 알아보았다. 극저온 상태인 $-163^{\circ}C$의 온도상태로 유지되어야 하는 LNG선 화물탱크는 단열재료로 하여금 열을 차단하기 위해 많은 연구가 되어야 하는데 특히 여러 재료로 구성되어 있는 단열 화물창(CCS: Cargo containment system)은 열적 물성치가 온도에 따라 각각 어떠한 값을 가지는 것이 주요 관심대상이고, 이를 통해 전체 LNG 단열 화물창이 어떤 열적 분포를 가지는 것에 대한 연구가 필요하다. 실험을 통해 얻은 물성치를 가지고 전체 화물창의 온도분포를 정적 열해석을 통해 알아보았다. 또한 외부의 충격에 의해 LNG가 누수되었을때 2차 방벽 특히 hull 부분에서는 누수량에 대해서 어떠한 온도분포와 열적 안전성에 대해서 알아보았다.