• 제목/요약/키워드: Hull Resistance and Fouling

검색결과 6건 처리시간 0.026초

CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구 (A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD)

  • 석준;박종천;신명수;김성용
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

씨마진 산정법의 개선에 관한 연구(I) (An Improved Method for Determining Sea Margin (I))

  • 권영중
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.40-43
    • /
    • 2004
  • A rational method is presented for estimating the power increase of a ship at sea. A probabilistic approach is applied to determine the weather condition at sea, A comparison is made between some full-scale data and the result of Swift's method. A comparison is also made to find differences among the results of eight kind methods for the wind added resistance of a VLCC in head wind. The mean difference between the results is 7%, in general, for a given relative wind speed.

Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage

  • You, Youngjun;Choi, Jin Woo;Lee, Dong Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.184-198
    • /
    • 2020
  • Decisions of the design speed, MCR, and engine capacity have been empirically made by assuming the value termed the sea margin. Due to ambiguity regarding the effect of some factors on the sea margin, the value has been commonly decided based on experience. To evaluate the value from a new viewpoint, it is necessary to construct an approach to estimate the sea margin through an objective procedure based on a physical and mathematical model. In this paper, a framework to estimate the actual sea margin of an LNGC based on the maneuvering equations of motion is suggested by considering the hull, propeller, rudder, and given sea route under wind and waves. The fouling effect is additionally quantified as the increase of total resistance by considering the re-docking period. The operation data is reviewed to amend the increase of the total resistance considering the speed loss of a ship. Finally, the factor of how much the resistance increases due to fouling is newly obtained for the vessel. Based on the comparison of the estimated sea margin with the empirical range of the sea margin, the constructed framework is regarded as feasible.

물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구 (Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet)

  • 서대원;오정근
    • 해양환경안전학회지
    • /
    • 제28권6호
    • /
    • pp.1078-1085
    • /
    • 2022
  • 선박에 부착된 수중생물은 선체에서 성장하면서 선박의 저항을 크게 증가시킬 뿐만 아니라 부착생물이 배와 함께 이동하면서 지역의 해양 생태계 교란을 야기시키기도 한다. 이에 따라 국제해사기구에서는 선체부착생물의 이동을 막기 위해 선체부착생물 제거 및 청소성능 평가 논의를 시작해 오고 있다. 본 연구에서는 소형선박에 사용되는 FRP(Fiber Reinforced Plastic), HDPE((High Density Polyethylene), CFRP(Carbon Fiber Reinforced Plastic) 재료의 시편을 격포항(전락북도)에 약 80일간 양생시킨 후 물 제트 노즐을 이용하여 부착생물 제거실험을 수행하였다. 그 결과 김과 같은 해조류는 노즐과 시편과의 거리가 1.8cm, 100bar 일 때 제거되었지만, 따개비의 경우 200 bar 이상은 되어야 청소가 되는 것을 확인하였다.

국내입항 국제운항선의 선체부착생물 관리에 대한 연구 (Study on the Biofouling Management of International Ships Entering South Korea)

  • 박정경;허철회;김한필;조유경
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.10-18
    • /
    • 2022
  • 선박을 통한 세계교역 증가에 따라 침입외래종(Invasive Alien Species, IAS)로 인한 해양생태계파괴 및 사회경제적 피해가 지속적으로 증가하고 있다. 특히 선체표면과 틈새구역(Niche Area)에 부착된 해양생물의 이동은 외래종침입 문제뿐만 아니라 선박의 마찰저항을 증가시켜 운항효율감소 및 온실가스배출 증가를 유발한다. 국제해사기구(IMO)는 최근 선체부착생물 통제 및 관리에 대한 지침 개정작업에 착수하였고 뉴질랜드와 미국 캘리포니아는 이미 자국법으로 선체부착생물 관리를 규제하고 있다. 본 논문에서는 국내에 입항하는 국제운항선 5척을 대상으로 선체부착생물 관리현황과 생물부착현황을 조사하였고, 생물부착종과 피도(Coverage)를 분석하여 생물부착단계 등급(Level of Fouling, LoF rank)을 평가하였다. 모든 선박에서 대형부착생물(Macrofouling)이 관찰되었고 특히 선수 스러스터(Bow thruster), 빌지킬(Bilge keels) 및 해수 흡입구 격자(Sea-chest gratings)와 같은 틈새구역의 대형개체(Macro organisms) 부착이 심각한 수준으로 나타났다. 본 연구에서는 국내 선체부착생물 관리방안을 제시하고, 실선대상 생물부착단계등급 적용 및 검사(Inspection) 방법 개선방안을 제안하고자 하였다.

Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA(Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients

  • Shin, Myung-Soo;Ki, Min Suk;Park, Beom Jin;Lee, Gyeong Joong;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.294-303
    • /
    • 2020
  • This study discusses data collection, calculation of wind and wave-induced resistance, and speed-power analysis of an 8,600 TEU container ship. Data acquisition system of the ship operator was improved to obtain the data necessary for the analysis, which was accomplished using SPA (Ship Performance Analysis, Park et al., 2019) in conformation with ISO15016:2015. From a previous operation profile of the container, the standard operating conditions of mean draft were 12.5 m and 13.6 m, which were defined with the mean stowage configuration of each condition. Model tests, including the load-variation test, were conducted to validate new ship performance and for the speed-power analysis. The major part of the added resistance of container ship is due to the wind. To check the reliability of wind-resistance calculation results, the resistance coefficients, added resistance, and speed-power analysis results using the Fujiwara regression formula (ISO15016:2015) and Computational fluid dynamics (Ryu et al., 2016; Jeon et al., 2017) analysis were compared. Wind speed and direction measured using an anemometer were used for wind-resistance calculation and the wave resistance was calculated using the wave-height and direction-data from weather information. Also, measured water temperature was used to calculate the increase in resistance owing to the deviation in water density. As a result, the SPA analysis using measured data and weather information was proved to be valid and able to identify the ship's resistance propulsion performance. Even with little difference in the air-resistance coefficient value, both methods provide sufficient accuracy for speed-power analysis. The differences were unnoticeable when the speed-power analysis results using each method were compared. Also, speed-power analysis results of the 8,600 TEU container ship in two draft conditions show acceptable trends when compared with the model test results and are also able to show power increase owing to hull fouling and aging. Thus, results of speed-power analysis of the existing 8,600 TEU container ship using the SPA program appropriately exhibit the characteristics of speed-power performance in deal conditions.