• Title/Summary/Keyword: Hull Resistance

Search Result 444, Processing Time 0.029 seconds

A Study on the Estimation Method of EHP of Small Fishing Boats Having Chine Line and Optimization Technique of Hull Form Parameters Having Low Resistance (Chine Line이 있는 소형어선의 유효마력 추정법 및 최소저항을 갖는 선형 요소들의 최적화에 관한 연구)

  • 이근무
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.341-349
    • /
    • 1994
  • From the results of model tests, statistical regression analysis for EHP estimation based on hull form parameters is adopted in this study. From this result, the method for estimation of EHP and optimization of hull form parameters at the initial design stage of fishing boats is developed. This method is applied to two standard fishing boats with chine lines. The EHP s are estimated and compared to experimental results. From the optimization of four principal hull form parameters of these fishing boats, approximately 19% of resistance reduction at the design speed is achieved and thus certifies that this method can be used efficiently for the initial design of hull forms of fishing boats.

  • PDF

An Exper imenta1 Study for Bow Hull Form Development of Catamaran Type Sweeping Vessel (쌍동형 부유쓰레기 청소선의 선수선형 개량을 위한 실험적 연구)

  • 정우철;박찬원;홍기섭;유호근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.53-59
    • /
    • 2001
  • In this Paper, the resistance performances of twin hull forms, which are simplified as two-dimensional wedge shape, are experimentally investigated in low and middle speed ranges to find out the effect of distance between two hulls and fore-body shape for the future hull form development of catamaran type sweeping vessel. The model tests are performed for seven different cases for three models in the circulating water channel(CWC) of Inha Technical College. The free surface flows are observed together to investigate the relation between resistance performance and free surface characteristics. A conceptual design for the modification of bow hull form is presented and the efficiency is discussed.

  • PDF

Performance Improvement of a High Speed Planing Boat by a Stern Wedge

  • Yang, Seung-Il;Kim, Seong-Hwan
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.87-98
    • /
    • 1984
  • An experimental study carried out to predict the performance characteristics of a high speed planing boat at the two displacements whose hull form shows hard chines form transom to bow. In the resistance test the planing hull model was porpoising at and above 30 knots for both displacements of 30 tons and 24 tons. A small stern wedge was newly designed and attached across hull bottom. The planing hull model with the stern sedge did not show any porpoising up to the speed of 45 knots for both displacements and it analysed results shows the improvement of resistance performance and planing performance comparing with those of original hull form; i.e. for displacement of 30 tons the effective power and trim angle were reduced by 18.9% and 5.71 degrees at the speed of 28 knots, and for the displacement of 24 tons the effective power and trim angle were reduced by 23.63% and 4.37 degrees at the speed of 28 knots, respectively.

  • PDF

Hull-form optimization of a container ship based on bell-shaped modification function

  • Choi, Hee Jong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.478-489
    • /
    • 2015
  • In the present study, a hydrodynamic hull-form optimization algorithm for a container ship was presented in terms of the minimum wave-making resistance. Bell-shaped modification functions were developed to modify the original hull-form and a sequential quadratic programming algorithm was used as an optimizer. The wave-making resistance as an objective function was obtained by the Rankine source panel method in which non-linear free surface conditions and the trim and sinkage of the ship were fully taken into account. Numerical computation was performed to investigate the validity and effectiveness of the proposed hull-form modification algorithm for the container carrier. The computational results were validated by comparing them with the experimental data.

Calculation of Wave Amplitude Functions, Wave Resistance, Wave Elevation Along the Hull, Sinkage and Trim by First-Order Thin-Ship Theory (얇은배 선형이론에 의한 진폭영수 조피저항 선측파고, 침하와 Trim의 계산)

  • Gang, Sin-Hyeong;Lee, Yeong-Gil;Hyeon, Beom-Su
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.153-167
    • /
    • 1982
  • From first-order thin-ship theory, we can obtain the" wave resistance, wave amplitude functions, wave elevation along the hull, sinkage and trim of a ship moving with constant speed into calm water. Generally, these calculations of ship is called with Michell’s Theory, and there is all the difference between calculated wave resistance and residual resistance from conventional wave resis¬tance test. But, these calculated results are important reference materials for initial hull form design procedure. Various calculated results for Shearer’ s Model, Wigley’s Model and Series 60 4210W Model have been calculated using this theory. The results are compared with the corresponding experimental values, and the agreement between theoretical and experimental values is considered satisfactory.

  • PDF

Hull Form Development of Small-Size Coastal Leisure Boat - Resistance Performance at High Speed Ranges - (연안용 소형 레저선 선형개발 - 고속 영역에서의 저항특성 고찰 -)

  • Jeong, Uh-Cheul;Park, Je-Woong;Koo, Jong-Do
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.60-63
    • /
    • 2003
  • Resistance performance of 3 G/T class coastal leisure boat is experimentally investigated at high speed ranges and the effect of a fin attached at hull side is studied together. Wave patterns are observed to make clear the relation between the resistance performances and the wave characteristics.

  • PDF

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Yun, Soon-Dong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.869-875
    • /
    • 2006
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60( $C_B=0.6$) hull have been performed and the results obtained by the numerical calculations have been compared with the original hulls.

A Study on the Hull Form Development of the 25 Knots Class Planing Hull Form Fishing Boat (25노트급 활주형 어선의 기본선형 개발에 관한 연구)

  • LEE KWI-JOO;JOA SOON-WON;PARK MYUNG-KYU;SHIN YOUNG-KYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.88-94
    • /
    • 2003
  • A series of tests of 5 model ships, selected from a data survey of 10 Gross Tonnage actual fishing boats, were performed in two circulating water channels (Chosun University in Korea and WJFEL in Japan), in order to develop the basic hull form of a 25 knots-class fishing boat. Resistance tests, trim and sinkage measurements and wave pattern observations etc., were included in each I1wdel test, and the model test results were compared and analyzed. The result was as follows: P-4 hull form ship changed into Deep V type bow is the best hull form with good performance, especially with regard to ship's resistance efficiency.

Hull Form Development of a Bulk Carrier using CFD (CFD를 이용한 벌크화물선의 선형개발)

  • Park, Hyun-Suk;Kim, Byeoung-Nam;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.502-512
    • /
    • 2008
  • CFD tools were intensively used to develop a bulk carrier hull form of 180,000 DWT. HCAD and WAVIS were utilized to vary and evaluate the hull forms. LCB and framelines were systematically changed starting from a mothership. Resistance characteristics have been assessed by evaluating the wave-pattern resistance and viscous pressure drag along with the wave profile and wake distribution. It was found that the hull forms obtained from LCB variations were not good enough to satisfy the target resistance coefficient because of large wave generation at the design speed. After choosing the appropriate one from the LCB variation series, bow and stern framelines have been modified to improve wave-making characteristics and wake distribution, respectively. Model tests were performed to confirm the CFD results. Furthermore, the effect of free surface on CFD application was investigated, and a few comments are given on the difference between WAVIS version 1.4 and 2.0.

Prediction of Ship Resistance Performance Based on the Convolutional Neural Network With Voxelization (합성곱 신경망과 복셀화를 활용한 선박 저항 성능 예측)

  • Jongseo Park;Minjoo Choi;Gisu Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • The prediction of ship resistance performance is typically obtained by Computational Fluid Dynamics (CFD) simulations or model tests in towing tank. However, these methods are both costly and time-consuming, so hull-form designers use statistical methods for a quick feed-back during the early design stage. It is well known that results from statistical methods are often less accurate compared to those from CFD simulations or model tests. To overcome this problem, this study suggests a new approach using a Convolution Neural Network (CNN) with voxelized hull-form data. By converting the original Computer Aided Design (CAD) data into three dimensional voxels, the CNN is able to abstract the hull-form data, focusing only on important features. For the verification, suggested method in this study was compared to a parametric method that uses hull parameters such as length overall and block coefficient as inputs. The results showed that the use of voxelized data significantly improves resistance performance prediction accuracy, compared to the parametric approach.