• 제목/요약/키워드: Hull Resistance

검색결과 444건 처리시간 0.028초

점성저항을 고려한 선형의 초기설계에 관한 연구 (A Study on the Preliminary Design of Hull Form considering Viscuous Resistance)

  • 이경도
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.112-116
    • /
    • 2000
  • To determine a preliminary hull form with a minimum viscous resistance this study considers the systematic variations of full form and calculations of the viscous resistance for varied hull forms. A preliminary hull form can be determined from a parametric study of viscous resistance.

  • PDF

50노트급 활주형선의 저항성능 개선을 위한 부가물 부착에 관한 실험적 연구 (An experimental study on the improvement of resistance performance by appendage for 50 knots class planing hull form)

  • 이귀주;박나라;이은정
    • 수산해양기술연구
    • /
    • 제41권3호
    • /
    • pp.222-226
    • /
    • 2005
  • A series of model tests carried out at the CWC of WJFEL for the purpose of prediction of resistance for the performance and improvement of resistance by attaching appendage for the ship of 50 knots class planing hull. The resistance performance evaluation has been carried out for the bare hull and for the appendage hull with two different depth of vertical type wedges. In the bare model test, trim and sinkage is calculated for the planing hull and the resistance is calculated. For minimizing the resistance, wedge appendage is attached and tested. Analysis and tests shows that for a 12.5mm wedge, resistance is minimum and overall power tallied to 5636ps.

저항최소화 소형 어선선형의 선수파 특성에 관한 연구 (A Study on the Bow Wave Characteristics for the Resistance-Minimized Hull Form of Small Fishing Boat)

  • 유진원;이영길
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.124-131
    • /
    • 2008
  • This paper presents the analysis of resistance performance and bow waves for the resistance-minimized hull form of small fishing boat by using numerical simulations and model tests. The resistance-minimized hull form is developed from an original hull form which is selected from existing small fisher boats in our country. In order to estimate the resistance performance for the original and the developed hull form, several numerical simulations and model tests are carried out. Marker and Cell(MAC) method and Marker-Density method are adopted to simulate the free-surface bow waves around advancing hull surface. The results of numerical simulations are compared with the model tests in towing tank. The results show that the resistance performance of the resistance-minimized hull form is improved than that of the original hull form. The results of this study will be a good guide to the hull form development of small fishing boats in future.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

수학적 선형의 저항특성 추정 및 선형 최적화에 대한 연구 (Study on the Resistance Prediction and Hull Form Optimization for Mathematical Hull Forms)

  • 민계식;이연승;강선형;한범우
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.1-12
    • /
    • 2004
  • In order to prepare the fuel-economic hull form design method for fine higher-speed ships, systematic theoretical and experimental study has been performed on the relation between hull form characteristics and ship's resistance and on the effect of the optimization of main hull form characteristics. The results of this study provide not only a great insight into the relation between ship's resistance and hull form characteristics, but also a proper direction of the optimization of main hull form characteristics for the improvement of ship's resistance characteristics.

G/T 190톤급 한국 대형선망 본선의 저항저감에 대한 연구 (A Study on the Resistance Reduction of G/T 190ton Class Main Vessel in Korean Large Purse Seiner Fishing System)

  • 박애선;이영길;김두동;유진원;하윤진;진송한
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.367-375
    • /
    • 2012
  • In this study, hull form of main vessel of Korean large purse seiner fishing industry is developed for the improvement of resistance performance as well as for the satisfaction to the Standard of Fishing Convention, ILO. Through the modification of reference hull form parameters and local characteristics, the hull form development is carried out. The optimum hull form parameters are searched by Sequential Quadratic Programing(SQP) method with the power estimation method of Holtrop & Mannen. To minimize the wave resistance, bulbous bow parameters are determined by the bulbous bow design method of Alvarino. The plasmatic curve is redesigned from that of the reference hull by using Lackenby method. The resistance performances of the reference and designed hull forms are estimated by using numerical simulation method. Also, the judgment of seakeeping ability and the estimation of intact stability for the designed hull form is carried out. As a result, the optimum hull form is proposed. To verify the improvement of resistance performance, model tests are carried out in towing tank. The results show that the resistance of the designed hull form is about 14% smaller than that of the reference hull from at design speed. A new hull form proposed in this study can contribute to the development of the main vessel hull form of Korean large purse seiner fishing system.

The estimations of planing hull running attitude and resistance by using CFD and Goal Driven Optimization

  • ZHANG, Qi;KIM, Dong-Joon
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.285-294
    • /
    • 2015
  • As a "kind of" mature ship form, planing hull has been widely used in military and civilian areas. Therefore, a reasonable design for planing hull becomes more and more important. For planing hull, resistance and trim are always the most important problems we are concerned with. It affects the planing hull's economic efficiency and maneuverability very seriously. Instead of the expensive towing tank experiments, the development of computer comprehensive ability allows us to previously apply computational fluid dynamics(CFD)to the ship design. In this paper, the CFD method and Goal Driven Optimization (GDO) were used in the estimations of planing hull resistance and running attitude to provide a possible method for performance computation of planing hull.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

비대칭과 대칭 단동선형을 가진 쌍동선의 조파저항성능 분석 (Wave-resistance Performance Analysis of the Twin Hull for a Type of the Asymmetric and Symmetric Mono Hull)

  • 최희종;박동우
    • 해양환경안전학회지
    • /
    • 제19권1호
    • /
    • pp.78-84
    • /
    • 2013
  • 본 연구의 주목적은 쌍동선형의 조파저항성능을 평가할 수 있는 수치해석 프로그램을 개발하는 것이다. 개발된 프로그램을 이용하여 비대칭과 대칭인 단동선형을 가진 서로 다른 두 가지 쌍동선에 대하여 수치계산을 수행하여 저항성능을 평가 하였다. 타당성 검증을 위해서 수치해석 결과 중 선수와 선미에서의 침하량, 트림 그리고 조파저항 계수를 수조모형시험 결과와 비교하였다. 이러한 비대칭 그리고 대칭 선형이 가지는 쌍동선의 유체역학적 특성에 관한 비교분석 자료는 향후 선형개발 시 충분한 활용 가치가 있다고 판단된다.

최적선형개발에 대한 기초연구 (Fundamental Study for the Development of an Optimum Hull Form)

  • 서광철;최희종;전호환;김문찬
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.37-42
    • /
    • 2003
  • Fundamental Study for optimizing ship hull form using SQP(sequential quadratic programming) method in a resistance point of view is presented. The Wigley hull is used as an initial hull and numerical calculations are carried out according to various froude numbers. To obtain the ship resistance the wave resistance is evaluated by a Rankine source panel method with nonlinear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of a hull surface is represented and modified by B-spline surface patch. The displacement and the waterplane transverse 2nd moment of inertia of the hull is fixed during the optimization process. And the shp design program called EzHULL is used to draw the lines of the optimized hull form to perform the model test.

  • PDF