• Title/Summary/Keyword: Hull Block Assembly

Search Result 19, Processing Time 0.156 seconds

Assembly Unit Determination System for Hull Block Assembly Processes (선각블럭 조립에서의 조립단위 결정시스템 개발에 관한 연구)

  • 조규갑;류광렬;최형림;김성진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.938-941
    • /
    • 1995
  • This paper is concerned with the determination of assembly unit for hull block assembly processes for shipbuilding. In this study,genetic algorithm is adopted for assembly level allocation and assemaly unit is determined by rule-based reasoning. The criteria to detemine assembly unit is to minimize welding operation time for the block assembly.

  • PDF

A Prototype of Sensor Module to Control the Position of Hull Block for Tack Welding (선체 블록의 판접 위치 획득을 위한 센서 모듈 시제품 개발)

  • Jeon, Jeong-Ik;Lee, Jang-Hyun;Son, Gum-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2012
  • Alignment of the main plates during the tack welding is essential to block assembly since most of the curved blocks and outfitting parts are assembled on the jigs and fixtures. Tact welding of main plates is the initial process of the curved hull block assembly. Due to the heavy weight of the main plates it is difficult to locate the plate on the accurate position of the jig and fixtures before welding. The conventional masonry process requires much time and manual work in order to achieve the accurate alignment. This labour-intensive process results in relatively high errors and correction works. Due to their larger dimensions and heavier weights, these hull blocks are not ergonomically desirable and, therefore, various mechanical devices such as hydraulic balancers or hydraulic jigs are used for the plate alignment. In this study, the position-sensing scheme implemented by sensors is presented in order to align the main plates on the accurate position during the hull block assembly. Integrating the Infrared photo sensors and micro processor unit, a small scaled prototype of the position-sensing module is developed to determine the alignment of main plates.

A Study on the Generation of Block Projections for the Assembly Shops (정반 배치용 블록 투영 형상 생성에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.203-211
    • /
    • 2014
  • To raise the industrial competitiveness in the field of ship-building, it is crucially important that the yard should use production facilities and working space effectively. Among the related works, the management of tremendous blocks' number, the limited area of assembly shops and inefficient personnel and facility management still need to be improved in terms of being exposed to a lot of problems. To settle down these conundrums, the various strategies of block arrangement on the assembly floors have been recently presented and in the results, have increasingly began to be utilized in practice. However, it is a wonder that the sampled or approximated block shapes which usually are standardized projections or the geometrically convex contour only have been prevailed until now. In this study, all parts including the panel, stiffeners, outer shells, and all kinds of outfitting equipment are first extracted using the Volume Primitive plug-in module from the ship customized CAD system and then, the presented system constructs a simpler and more compact ship data structure and finally generates the novel projected contours for the block arrangement system using the adaptive concave hull algorithm.

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

Bay and Machine Selection for the Parts Fabrication of Ship Hull Construction (조선 선각가공공정에서 부재가공을 위한 Bay 및 가공기계의 선택)

  • Park, Chang-Kyu;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.395-400
    • /
    • 1999
  • Shipbuilding process is composed of hull construction, in which the structural body of a ship is formed, and outfitting, in which all the non-structural parts such as pipes, derricks, engines, machinery, electrical cable, etc. are manufactured, added and assembled. Hull construction can be classified into parts fabrication, block assembly and hull erection. Among them, the parts fabrication is the first manufacturing stage that produces components or zones needed for block assembly and hull construction. More specifically, the parts fabrication is performed through machining processes including marking, cutting, pressing, and/or forming. When material is entering into the parts fabrication stage, it is important for achieving the total efficiency of production to select one of production division, so-called 'bay,' as well as machine tools on which the part is fabricated. In this paper, given production quantities of parts in the fabrication stage, the problem is to optimally select machine tools and production division, such that the total flow-time is minimized as well as the workload among machines is balanced. Specifically, three mathematical models for flow-time minimization, load balance, and simultaneously considering both objectives, and a numerical example are analyzed and presented.

  • PDF

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.

An Assembly Simulation of a Plane Block with Gravity and Welding Deformations (자중과 용접변형을 고려한 평블록 조립 시뮬레이션)

  • Jae-Gyou Roh;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.122-133
    • /
    • 1999
  • Overlap, excessive wide gaps, and errors between blocks during erection process increases cost and man-hour. In this paper, a system to simulate the assembly process is suggested and a plane block assembly of welding deformation with gravity is simulated in consideration of assembly order, deformations and errors occurring in the cutting and forming processes are not considered and welding deformations are acquired by equivalent stiffness and load method from experiments and hull double bottom plane block is assembled on a assembly order by panel method. It is certified that according to the order of assembly, intermediate product shape affects rigidity which affects welding deformations. Assembly order must be considered in the assembly process. It is certified that the gravity has important role in the assembly process.

  • PDF

Study on Analysis Method for Welding Deformation of curved Block - Development of Analysis and Application of real Block (곡 블록 용접변형 해석법에 관한 연구 - 해석법 정립 및 실 블록 적용)

  • Lee Myeong-Su;Jang Gyeong-Bok;Yang Jin-Hyeok;Gang Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.77-79
    • /
    • 2006
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF

Simulation of Welding Deformation of Hull Block Joint considering Dog-Pieces (도그피스를 고려한 선체 블록 조인트의 용접변형 시뮬레이션)

  • Kim, Ho-Kyeong;Ko, Dae-Eun;Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4717-4722
    • /
    • 2014
  • In shipyards, a large number of dog-pieces are used to align welding joints and prevent welding deformation in the block assembly stage. The huge working man-hours consumed in the working process of dog-pieces impedes the productivity growth of shipyards. In this study, an analysis method based on the experimental results was proposed to simulate the welding deformation of butt joints with a dog-piece setting. The simulation of welding deformation of a hull block joint was performed using the proposed analysis method. Finally, the proposed analysis method can be used to establish guidelines for the proper use of dog- pieces in the block assembly stage.

Study on Analysis Method for Welding Deformation of curved Block - Specimen test and Verification (곡 블록 용접변형 해석법에 관한 연구 - 시험편 테스트 및 검증)

  • Lee, Myeong-Su;Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Gang, Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.17-19
    • /
    • 2005
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF