• Title/Summary/Keyword: HuC

Search Result 671, Processing Time 0.03 seconds

Comprehensive Analysis of Vascular Endothelial Growth Factor-C Related Factors in Stomach Cancer

  • Liu, Yong-Chao;Zhao, Jing;Hu, Cheng-En;Gan, Jun;Zhang, Wen-Hong;Huang, Guang-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1925-1929
    • /
    • 2014
  • Background: Vascular endothelial growth factor-C (VEGF-C), which contributes to lymphatic metastasis (LM) in malignant disease, is one of the most important factors involved in physical and pathological lymphangiogenesis. Some VEGF-C related factors such as sine oculis homeobox homolog (SIX) 1, contactin (CNTN) 1 and dual specificity phosphatase (DUSP) 6 have been extensively studied in malignancies, but their expression levels and associations have still to be elucidated in stomach cancer. Methods: We detected their expression levels in 30 paired stomach cancer tissues using quantitative real-time reverse transcription-PCR (qRT-PCR). The expression and clinical significance of each factor was analyzed using Wilcoxon signed rank sum test. The correlation among all the factors was performed by Spearman rank correlation analysis. Results: The results suggest that VEGF-C and CNTN1 are significantly correlated with tumor size, SIX1 with the age and CNTN1 also with the cTNM stage. There are significant correlations of expression levels among VEGF-C, SIX1, CNTN1 and DUSP6. Conclusions: There exists an important regulatory crosstalk involving SIX1, VEGF-C, CNTN1 and DUSP6 in stomach cancer.

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

Preparation and C-V characteristics of $Y_2O_3-StabilzedZrO_2$ Thin Films by PE MO CVD (플라즈마 화학 증착법에 의한 $Y_2O_3-StabilzedZrO_2$박막의 제조와 Capacitance-Voltage특성)

  • Choe, Hu-Rak;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.510-515
    • /
    • 1994
  • Yttria-stabilized zirconia(YSZ) films were prepared onto p-type (100) silicon wafer by a plasma-enhanced metallorganic chemical vapor deposition(PE MO CVD) processing involving the application of vapor mixture of tri(2.2.6.6-tetramethyl-3, 5-heptanate) yttrium$[Y(DPM)_3]$, zirconiumtriflouracethyla cetonate$(Zr(tfacac)_4$ and oxygen gas. The x-ray diffraction(XRD) and fourier transform infrared spectra(FT1R) results showed that the deposited YSZ films had a single cubic phase. $Y_2O_3$ content of YSZ film was analyzed by PIXE(partic1e induced x-ray emission). The experimental results by PIXE revealed that 12.lmol%, 20.4mol% and 31.6mol% $Y_2O_3$ could be obtained as the $Y(DPM)_3$ bubbling temperature varied at $160^{\circ}C, 165^{\circ}C$ and $170^{\circ}C$ respectively. The increase of $Y(DPM)_3$ bubbling temperature caused shifting flat band voltage to have a negative value.

  • PDF

Antibacterial Efficacies of Disinfectants against Salmonella typhimurium Depending on Pre-warming Conditions

  • Lee, Jin-Ju;Kim, Dong-Hyeok;Kim, Dae-Geun;Simborio, Hannah Leah;Min, Won-Gi;Lee, Hu-Jang;Chang, Dong-Il;Chang, Hong-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.65-72
    • /
    • 2012
  • Salmonellosis is a widespread bacterial zoonosis that commonly causes enterocolitis and foodborne poisoning leading to an extensive economic loss in domestic animal industry. Considerably, the emergence of multidrug resistant strains of Salmonella spp. induces further severe problems affecting public health. The present report was designated to investigate the antibacterial efficacies of three common disinfectants including an oxidizing compound disinfectant (OXC), a triple salt (TS) and a quaternary ammonium compound (QAC) against Salmonella typhimurium subjected to the preliminary changes of drug temperature. All solutions of three disinfectants were pre-incubated at different temperature (22, 37 and $63^{\circ}C$) for 1 h prior to exposure to bacteria. The disinfectants and bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OMS) according to treatment condition. Under the DW condition, the disinfectant efficacy of the QAC at $63^{\circ}C$ was higher than that of $22^{\circ}C$. Furthermore, under HW diluent the disinfectant efficacy of the TS pre-warmed at both of 37 and $63^{\circ}C$ were increased compared to that of $22^{\circ}C$. Considerably, the efficacy of pre-warmed QAC at both of 37 and $63^{\circ}C$ under the OMS diluent were higher than that of $22^{\circ}C$. Conclusively, prewarming at higher temperatures have positive effects on the stability of the antibacterial efficacies of TS and QAC.

Evaluation of Compost Qualities with or without Microbial Inoculation for Food Waste Composting (미생물제 첨가유무에 따른 음식물 쓰레기 퇴비 부숙도 평가)

  • Jeong, Jun-Young;Jung, Kwang-Yong;Nam, Sung-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 1999
  • This studies were conducted to evaluate efficiency of microbial inoculator for active composting of food wastes. The Microbial inoculators used in this studies were purchased from different comparise to evaluate their effectiveness for composting of food waste in Korea. The number of bacteria growing at $30^{\circ}C$ in commercial inoculator collected were below $91.0{\times}10^8\;CFU/g$ which were counted from well cured compost made by animal manure. The number of bacteria in commercial microbial inoculator, such as FL, VP, B9, CM and GE were higher than that of composted at $50^{\circ}C$ or $60^{\circ}C$ of incubation temperature. Fungi were counted in GR, VP and B9 as over $10^3CFU/g$ at $30^{\circ}C$ of incubation temperature, while fungi of all the commercial inoculator collected could not grown at $50^{\circ}C$ and $60^{\circ}C$. Actinomycetes in most of the these had higher number($10^5CFU/g$) than that of compost : however, it was not detected at $60^{\circ}C$ incubation temperature from all the samples collected. The amount of carbon dioxid production was order to VP>HU>B9>GE>CM>Control>Compost in the lab scale composting test with or without inoculation of commercial inoculators, however, but the difference in carbon dioxide production was similar among each treatments. The effect of inoculation on composting parmeter such as pH changes, temperature increasing and change of chemicals properties were a little among each treatments, with or without inoculation of commercial inoculator in active composting of food waste. Using commercial inoculator did not show any statistical difference in food waste composting process under various condition such as pH changes, temperature changes, etc.

  • PDF

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

Expression of Sara2 Human Gene in Erythroid Progenitors

  • Jardim, Denis Leonardo Fontes;Cunha, Anderson Ferreira Da;Duarte, Adriana Da Silva Santos;Santos, Camila Oresco Dos;Saad, Sara Terezinha Olalla;Costa, Fernando Ferreira
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • A human homologue of Sar1, named Sara2, was shown to be preferentially expressed during erythropoiesis in a culture stimulated by EPO. Previous studies, in yeast, have shown that secretion-associated and Ras-related protein (Sar1p) plays an essential role in protein transport from the endoplasmic reticulum to the Golgi apparatus. Here, we report the molecular analysis of Sara2 in erythroid cell culture. A 1250 bp long cDNA, encoding a 198 amino-acid protein very similar to Sar1 proteins from other organisms, was obtained. Furthermore, we also report a functional study of Sara2 with Real-time quantitative PCR analysis, demonstrating that expression of Sara2 mRNA increases during the initial stages of erythroid differentiation with EPO and that a two-fold increase in expression occurs following the addition of hydroxyurea (HU). In K562 cells, Sara2 mRNA was observed to have a constant expression and the addition of HU also up-regulated the expression in these cells. Our results suggest that Sara2 is an important gene in processes involving proliferation and differentiation and could be valuable for understanding the vesicular transport system during erythropoiesis.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.