• Title/Summary/Keyword: HslU

Search Result 6, Processing Time 0.019 seconds

Nucleotide Triphosphates Inhibit the Degradation of Unfolded Proteins by HslV Peptidase

  • Lee, Jung Wook;Park, Eunyong;Bang, Oksun;Eom, Soo-Hyun;Cheong, Gang-Won;Chung, Chin Ha;Seol, Jae Hong
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.252-257
    • /
    • 2007
  • Escherichia coli HslVU is an ATP-dependent protease consisting of two heat shock proteins, the HslU ATPase and HslV peptidase. In the reconstituted enzyme, HslU stimulates the proteolytic activity of HslV by one to two orders of magnitude, while HslV increases the rate of ATP hydrolysis by HslU several-fold. Here we show that HslV alone can efficiently degrade certain unfolded proteins, such as unfolded lactalbumin and lysozyme prepared by complete reduction of disulfide bonds, but not their native forms. Furthermore, HslV alone cleaved a lactalbumin fragment sandwiched by two thioredoxin molecules, indicating that it can hydrolyze the internal peptide bonds of lactalbumin. Surprisingly, ATP inhibited the degradation of unfolded proteins by HslV. This inhibitory effect of ATP was markedly diminished by substitution of the Arg86 residue located in the apical pore of HslV with Gly, suggesting that interaction of ATP with the Arg residue blocks access of unfolded proteins to the proteolytic chamber of HslV. These results suggest that uncomplexed HslV is inactive under normal conditions, but may can degrade unfolded proteins when the ATP level is low, as it is during carbon starvation.

Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus

  • Jeong, Soyeon;Ahn, Jinsook;Kwon, Ae-Ran;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.694-704
    • /
    • 2020
  • HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.

Purification and preliminary analysis of the ATP-dependent unfoldase HslU from the gram-positive bacterium Staphylococcus aureus

  • Jeong, Soyeon;Ha, Nam-Chul;Kwon, Ae-Ran
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.96-99
    • /
    • 2018
  • The gram-positive bacterium Staphylococcus aureus is a common cause of abscesses, sinusitis and food poisoning. The emergence of antibiotic-resistant strains has caused significant clinical issues worldwide. The HslU-HslV complex was first identified as a prokaryotic homolog of eukaryotic proteasomes. HslU is an unfoldase that mediates the unfolding of the substrate proteins, and it works with the protease HslV in the complex. To date, the protein complex has been mostly studied in gram-negative bacteria. In this study, we report the purification and crystallization of the full-length HslU from S. aureus. The crystal diffracted X-rays to a $3.5{\AA}$ resolution, revealing that the crystals belong to space group $P2_1$, with unit cell parameters of a = 166.5, b = 189.6, $c=226.6{\AA}$, and ${\beta}=108.1^{\circ}$. We solved the phage problem by molecular replacement using the structure of HslU from Haemophilus influenzae as a search model. The cell content analysis with this molecular replacement solution revealed that 24 molecules are contained in the asymmetric unit. This structure provides insight into the structural and mechanistic difference of the HslUV complex of gram-positive bacteria.

Studies on the Isolation of Cholesterol Oxidase Producing Soil Microorganism and the Culture Condition for the roduction of High Activity Cholesterol Oxidase (Cholesterol Oxidase를 생성하는 토양 미생물의 분리 및 효소 생산에 관한 연구)

  • 이인애;최용경;이홍수;최인성;정태화
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 1992
  • A novel strain of HSL613 producing a large amount of cholesterol oxidase as an extra~ cellular enzyme was isolated from soil samples. Experiments were carried out to optimize the condition of cholesterol oxidase production using HSL613 strain. This microorganism was shown to give the maximum yield f)f cholesterol oxidase in the medium containing 2% glucose, 2% yeast extract, 0.2% $K_2HP0_4$, 0.1% NaCl. 0.005% $CaCl_22H_2O, 0.001% $FeSO_47H_20$. The optimum temperature was $30^{\circ}C$ and the enzyme production reached a maximum level at 144 hours of cultivation (10.3$\mu$/ml).

  • PDF

Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes (미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향)

  • Kim, Hye-Jin;Kang, Chang-Han;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1052-1056
    • /
    • 2012
  • Undaria pinnatifada has been used as a natural diet food with few calories and as a source of iodine. Even though U. pinnatifida has been regarded as a diet food, the mechanisms of its inhibitory effects on adipocyte differentiation and the accumulation of fat in adipocytes are poorly understood. In this study, the effect and mechanism of U. pinnatifida ethanol extract on 3T3-L1 differentiation into adipocytes were investigated. The effects of U. pinnatifida ethanol extract on cell viability and the anti-adipogenic effect were investigated via MTT assay, Oil red O staining, RT-PCR, and western blot. The U. pinnatifida ethanol extract did not show toxicity up to a concentration of 50 ${\mu}g/ml$. The addition of U. pinnatifida ethanol extract decreased triglyceride contents by 40% when 50 ${\mu}g/ml$ of U. pinnatifida ethanol extract was added during 3T3-L1 differentiation and adipocyte triglyceride formation. The transcription and expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin, and hormone-sensitive lipase (HSL) as adipocyte-specific proteins were determined by RT-PCR and western blot. The overexpression of $PPAR{\gamma}$ could accelerate adipocyte differentiation. Also, leptin was secreted for triglyceride accumulation in the adipocytes and the increase of adipocyte cell size. Thus, $PPAR{\gamma}$ and leptin were used as indicators of obesity. $PPAR{\gamma}$ and leptin were repressed by the increased addition of U. pinnatifida ethanol extract. This indicates that U. pinnatifida was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceride formation in adipocytes.