• Title/Summary/Keyword: Hoxc9

Search Result 5, Processing Time 0.016 seconds

Backbone assignment of human Hoxc9DBD

  • Ja-Shil Hyun;Sung Jean Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.23-27
    • /
    • 2023
  • Hoxc, or the Homeobox C cluster, is a group of genes that play a crucial role in embryonic development, particularly in patterning the body along the anterior-posterior axis. These genes encode transcription factors, which are proteins that bind to DNA and regulate the expression of other genes. Hoxc9 is specifically involved in the development of the skeletal system, nervous system, and adipose tissue. Hoxc9 overexpression has been linked to the development of various cancers such as leukemia and breast cancer. Here, we assigned the chemical shifts Hoxc9 DNA binding domain (DBD) using heteronuclear NMR techniques. The helical regions of Hoxc9 DBD correspond to the residues T200 - F213 (Helix I), T218 - L229 (Helix II), and T232 - K249 (Helix III). Our result would be helpful for studing the molecular interactions of the Hoxc9 DBD and other proteins.

Backbone assignment of HMGB1 A-box and molecular interaction with Hoxc9DBD studied by paramagnetic probe

  • Choi, Ji Woong;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.17-23
    • /
    • 2021
  • High mobility group protein B1 (HMGB1) is a highly conserved, non-histone, chromatin associated nuclear protein encoded by HMGB1 gene. HMGB1 proteins may be general co-factors in Hox-mediated transcriptional activation that facilitate the access of Hox proteins to specific DNA targets. It is unclear that the exact binding interface of Hoxc9DBD and HMGB1. To identify the interface and binding affinity of Hoxc9DBD and HMGB1 A-box, the paramagnetic probe, MTSL was used in NMR titration experiment. It is attached to the N-terminal end of HMGB1 A-box by reaction with thiol groups. The backbone assignment of HMGB1 A-box was achieved with 3D NMR techinques. The 15N-labeled HMGB1 A-box was titrated with MTSL-labeled Hoxc9DBD respectively. Based on the chemical shift changes we can identify the interacting residues and further map out the binding sites on the protein structure. The NMR titration result showed that the binding interface of HMGB1 A-box is around loop-1 between helix-1 and helix-2. In addition, the additional contacts were found in N- and C-terminus. The N-terminal arm region of Hoxc9DBD is the major binding region and the loop between helix1 and helix2 is the minor binding region.

Grp78 is a Novel Downstream Target Gene of Hoxc8 Homeoprotein

  • Kang, Jin-Joo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Previously, we have identified 14 putative downstream target genes of Hoxc8 homeoprotein in F9 murine embryonic teratocarcinoma cells through proteomics analysis. Among those, we tested a possibility of a DNA-k type molecular chaperone, Grp78, as a direct downstream target of Hoxc8, by cloning a 2.4 kb upstream region of murine Grp78 into a reporter plasmid and by testing if Hoxc8 can regulate its expression. We observed that Hoxc8 proteins could transactivate the reporter gene, which was affected by small interference RNAs (siRNAs) against to Hoxc8, suggesting that Grp78 is a novel downstream target of Hoxc8 in vivo.

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

A Homeotic Gene, Hoxc8, Regulates the Expression of Proliferating Cell Nuclear Antigen in NIH3T3 Cell

  • Min, Hye-Hyun;Kang, Myeng-Mo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • Hoxc8 is one of the homeotic developmental control genes regulating the expression of many downstream target genes, through which animal body pattern is established during embryonic development. In previous proteomics analysis, proliferating cell nuclear antigen (PCNA) which is also known as cyclin, has been implied to be regulated by Hoxc8 in F9 murine embryonic teratocarcinoma cell. When the 5' upstream region of PCNA was analyzed, it turned out to contain 20 Hox core binding sites (ATTA) in about 1.17 kbp (kilo base pairs) region ($-520{\sim}-1690$). In order to test whether this region is responsible for Hoxc8 regulation, the upstream 2.3 kbp fragment of PCNA was amplified through PCR and then cloned into the pGL3 basic vector containing a luciferase gene as a reporter. When the luciferase activity was measured in the presence of effector plasmid (pcDNA : c8) expressing murine Hoxc8, the PCNA promoter driven reporter activity was reduced. To confirm whether this reduction is due to the Hoxc8 protein, the siRNA against Hoxc8 (5'-GUA UCA GAC CUU GGA ACU A-3' and 5'-UAG UUC CAA GGU CUG AUA C-3') was prepared. Interestingly enough, siRNA treatment up regulated the luciferase activity which was down regulated by Hoxc8, indicating that Hoxc8 indeed regulates the expression of PCNA, in particular, down regulation in NIN3T3 cells. These results altogether indicate that Hoxc8 might orchestrate the pattern formation by regulating PCNA which is one of the important proteins involved in several processes such as DNA replication and methylation, chromatin remodeling, cell cycle regulation, differentiation, as well as programmed cell death.

  • PDF