• Title/Summary/Keyword: Hovering rotor

Search Result 89, Processing Time 0.025 seconds

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

CFD Analysis for Ground Effect of Tilt-Rotor UAV (틸트로터 무인기의 지면 효과 분석을 위한 전산해석)

  • Kim, Cheol-Wan
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

Study on Durability by Vibration and Fatigue of the Helicopter (헬기의 진동과 피로에 대한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.

Numerical Evaluation of Hovering Performance of Next Generation Rotor Blade(Nrsb-1) (차세대 로터 블레이드(NRSB-1)의 제자리 비행 성능 해석)

  • Lee,Gwan-Jung;Hwang,Chang-Jeon;Kim,Jae-Mu;Ju,Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.69-74
    • /
    • 2003
  • By employing vane tip concept, a new rotor blade (NRSB-I) has been designed to enhance the noise characteristics of BERP blade. Numerical analyses have been performed for hovering rotor and the results are compared with respect to those of original BERP blade. Although the thrust of designed rotor decreases by 6-7% due to cutout at the tip region, the results indicate that the actual performance loss is negligible because power reduction is greater than thrust loss. It is also found that aerodynamic fence is required at the outboard kink to obtain clearly separated twin-vortices because the vortex generated at kink is diffused during the convection over the blade surface.

Design of Vectored Sum Defuzzification Based Fuzzy Logic System for Hovering Control of Quad-Copter

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.318-322
    • /
    • 2016
  • A quad-copter or quad rotor system is an unmanned flying machine having four engines, which their thrust force is produced by four propellers. Its stable control is very important and has widely been studied. It is a typical example of a nonlinear system. So, it is difficult to get a desired control performance by conventional control algorithms. In this paper, we propose the design of a vectored sum defuzzification based fuzzy logic system for the hovering control of a quad-copter. We first summarize its dynamics and introduce a vectored sum defuzzification scheme. And then we design a vectored sum defuzzification based fuzzy logic system. for the hovering control of the quad-copter. Finally, in order to check the feasibility of the proposed system we present some simulation examples.

Study on the Hovering Flight Performance of a Single Rotor on a River Surveillance Hexacopter (하천 측량용 헥사콥터의 단일로터에 대한 제자리 비행 성능 연구)

  • Jeong, Won-hoon;Kim, Bong-hwan;Min, Kyoung-moo;Chia, Allie;Park, Geun-woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an experimental device was fabricated to evaluate the hovering flight performance of a single rotor on a hexacopter used for river surveillance, and a thrust performance test was conducted. In addition, the 3D profile of the propeller was extracted by 3D scanning and CFD analysis was performed using ANSYS CFD 14.5 based on the extracted 3D model of the propeller. The aerodynamic characteristics were compared with the results of the performance tests and CFD analysis, and the vortex structure corresponding to each motor rotational speed in revolutions per minute (rpm) was identified. In the future, we plan to provide valuable data for multicopter propeller design and performance verification.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Verification of Hovering Rotor Analysis Code Using Overlapped Grid (중첩격자를 이용한 제자리비행 로터 해석 코드의 수치특성)

  • Kim, Jee-Woong;Park, Soo-Hyung;Yu, Yung-Hoon;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.719-727
    • /
    • 2008
  • A 3-D compressible Navier-Stokes solver using overlapped grids is developed to predict a flow-field around a hovering rotor. The flow solver is verified by a parametric study with the grid spacing of wake grid, spatial accuracy and turbulence model. Computations are performed with different Chimera grid systems. Computational results are compared with the experimental data of Caradonna et al. for both blade loading and the tip vortex behavior. Numerical results show good agreements with experiments for the distribution of surface pressure and tip vortex behavior. Pressure distributions over the blade have marginal differences for different numerical methods, whereas large discrepancies are seen in the prediction of the wake behavior. Results unexpectedly show that the vortex strength from an automated cut-paste Chimera grid is weaker than that from the conventional Chimera grid.