• Title/Summary/Keyword: Hovering Control System

Search Result 71, Processing Time 0.024 seconds

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.

A Case Study on the Unmanned Modification Process of 500MD Helicopter (500MD 헬리콥터의 무인화 개발과정 사례 연구)

  • Kim, Won-Jin;Son, Taek-Joon;Kim, Hong-Dae;Gong, Byung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.329-334
    • /
    • 2021
  • Korean Air has set the goal of the first stage of the development of unmanned helicopters to perform in hovering flight by remote control. In order to achieve the development goal, Korean Air carried out system integration, ground test, and safety wire test in sequence after carrying out programmed depot maintenance and aircraft modification of manned aircraft, and verified the controllability and flight safety of the unmanned helicopter system step by step. In particular, it was confirmed that the safety wire test technique used in the final stage of verification was an effective method to verify flight safety and controllability for a fully unmanned helicopter system.

GUI S/W Development for Helicopter Simulation (헬리콥터 시뮬레이션용 GUI S/W 개발)

  • Park,Sang-Seon;Lee,Sang-Gi;Lee,Hwan;Ju,Gwang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.88-93
    • /
    • 2003
  • This Paper described the simulation program development for helicopter. In the design of flight control system to accomplish some special missions like UAV, it is important to minimize the execution time obtaining a linear model from nonlinear model that is used for design of controller. The first step for this kind of purpose is to complete a nonlinear model that contains full dynamic characteristics. The second step is to get the trim values that are obtained from the nonlinear model by solving an algebraic equation. And then stability and control derivatives are derived through hovering to forward flight by numerical perturbation that will be used for linear model for a specified flight condition. The software program(HeliSim) is developed by using MATLAB GUI and will provide easy modeling procedure. The suggested method in this paper is much more simpler than any other method like a fully scale helicopter model. The advantage of our suggested method will reduce the computational time due to simple formula to extract a linear model from nonlinear model that will be beneficially used for flight control system of unmanned helicopter by some reduction of computational load.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Analysis of Surface Image Velocity Field without Ground Control Points using Drone Navigation Information (드론의 비행정보를 이용한 지상표정점 없는 표면유속장 분석)

  • Yu, Kwonkyu;Lee, Junhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.154-162
    • /
    • 2022
  • In this study, a technique for estimating water surface velocity fields in the Universal Transverse Mercator coordinate system using the GPS information of a propagating drone but not ground control points is developed. First, we determine the image direction in which the upper side of an image is directed based on the navigation information of the drone. Subsequently, we assign the start and end frames of the video used and determine the analysis range. Using these two frames, we segment the measurement cross-section into a few subsections at regular intervals. At these subsections, we analyze 30 frame images to create spatio-temporal volumes for calculating the velocity fields. The results of the developed method (propagating drone surface image velocimetry) are compared with those of the existing method (hovering drone surface image velocimetry), and relatively good agreement is indicated between both in terms of the velocity fields.

Development of the Localization Algorithm for a Hovering-type Autonomous Underwater Vehicle using Extended Kalman Filter (확장칼만필터를 이용한 호버링타입 무인잠수정의 위치추정알고리즘 개발)

  • Kang, Hyeon-seok;Hong, Sung-min;Sur, Joo-no;Kim, Dong-hee;Jeong, Jae-hun;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • In this paper, in order to verify the performance of a localization algorithm using GPS as an auxiliary sensor, the algorithm was applied to a hovering-type autonomous underwater vehicle (AUV) to perform a field test. The applied algorithm is an algorithm to improve the accumulated positional error of dead reckoning using doppler velocity logger(DVL) and tilt-compensated compass module (TCM) mounted on the AUV. GPS when surfaced helps the algorithm to estimate the position and the heading bias error of TCM for geodetic north, which makes it possible to perform dead reckoning on north-east-down (NED) coordinates. As a result of field test performing heading control, it was judged that the algorithm could improve the positional error, enhance the operational capability of AUV and contribute to the research of underwater navigation depending on a magnetic compass.

System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle (6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계)

  • Lee, Sanghyun;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • As avionics and mechanical devices have been developed, the size of unmanned aerial vehicle (UAV) is getting smaller. However, the complicated and accurate missions are provided to the UAV. Among various types of UAVs, quadrotors are widely used for their availability by virtue of simple structure and hovering function. However, the control of quadrotor is highly constrained, because the quadrotor is an under-actuated system which has only 4 actuator inputs. To deal with this under-actuated problem, a new quadrotor model with two more actuators in addition to the 4 propeller inputs is provided to make the system fully-actuated. For the proposed model, a controller is designed using feedback linearization methods. To validate the model and to verify the performance of the proposed controller, numerical simulation is performed.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.