The house price rise suddenly is not only Economic stability but economic, mental state of a heavy burden to people. This paper is a house finance environment analyzed in this research about the rise factor of the house price and the result to present the plan to the natural disposition. The financial institute has an influence on the disguised demand extension of the house and The mortgage Lending in commercial Banks with the earnings as the stability high than the industry loaning. A house finance environment changes and will go from economic factor of the variety of the life style, the housing conditional according to the income level, a children education condition, and the population structure many this little. The disposition of the house need changes according to this and will have an influence on the house price. Necessary for a house market environment house policy of the market need which the consistency reflects so that we are suitable and is desired.
Proceeding of Spring/Autumn Annual Conference of KHA
/
2005.11a
/
pp.115-119
/
2005
This study is to examine changes since autonomy of lotting-out price of apartment house and planning factors related to sale of apartment house through leaflet of sale of apartment house. Objects of the study were leaflets of sale of apartment houses through the Donga Il Bo daily newspaper from 2001 to 2003. The results of research can be summarized to three. First, traffic of locational factors in advertisement of sale of apartment house showed the highest frequency and it was found that it was an important planning factor of apartment house. Second, considering that advanced facilities and the highest finishing materials were used, quality of apartment house has been advanced. Third, considering that community space, theme park and green zone showed high occupancy in external space, there has been high increase in external space as well as in internal one since autonomy of lotting-out price.
House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.
Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.
Korean Journal of Construction Engineering and Management
/
v.18
no.6
/
pp.89-97
/
2017
The number of Aged Apartment units is expected to increase as time went on. Living standards are getting better and they want a new apartment space as the economy progresses. Therefore, it is necessary to prepare for the increasing remodeling market through the feasibility evaluation method that can be applied to the remodeling project of the apartment house. The purpose of this study is to analyze the social pricing factors affecting the Officially assessed individual House Price for the analysis model of commercial house remodeling. The collected samples were analyzed using multiple regression analysis of 350 prices included in 127 lots. Middle school level, high school level, total number of households, and floor area ratio were extracted. As a result of comparing the Officially assessed individual House Price by applying to the remodeling case, the difference between the existing Officially assessed individual House Price and the improvement Officially assessed individual House Price is different. The accessibility with the subway station is included in the land price, and there is no change in the number of stories and directions because it is customized remodeling. There was a difference in the disclosure price depending on the type of factor extraction by the evaluator in a batch application of the disclosure price factors. The research can be used as a model for future remodeling business feasibility analysis.
The Journal of Asian Finance, Economics and Business
/
v.8
no.7
/
pp.671-679
/
2021
House ownership is considered as one of the important pre-conditions for marriage in China. Given that gender imbalance is a prominent issue in the country, competition for marriage partners might motivate males to look for a house and probably bigger and more expensive house. This is believed to have caused house price hikes in recent years. This study aims to investigate the impact of gender imbalance on house prices using data from 30 provinces in China for the 2000-2017 period. The results based on the generalized method of moments (GMM) estimations show that house price is strongly influenced by gender imbalance. However, there is no evidence to support differential effects across eastern and mid-western regions. One potential reason is that pre-marriage house ownership has become a common culture for the whole community and therefore it does not vary significantly across regions. There are several important policy implications. Firstly, the issues should be addressed by the policymakers at national level and not regional level. Secondly, the government should intervene to bring back gender ratio to its normal level. Finally, the government should limit the number of houses people can buy and increase the supply of houses in the market.
This paper describes the design of sample of the survey on the trend of house prices in city areas. The purpose of this research is to increase the precision of house price index in 39 cities and to provide with an accurate house price indes. The sample is selected in the stratified two stage sampling. In chapter 2, review and discussions are given on the sample design now in use. In chapter 3, we describe the sample size and the stratification, the house price index and error, and the substitution of sample. Finally we consider on problems of the sample design and some alternatives to solve them.
Overheated speculation areas which have high potential of becoming speculative are the target of many real estate policies. This paper proposes a model for spatial patterns of house price volatility and suggests a spatial pattern of overheated speculation areas. House prices are determined by economic behaviors of sellers and buyers who have rational or adaptive expectations. Spatial patterns of house price volatility are formed by tendencies of their economic behavior. If there is a majority of adaptive sellers and buyers in an area, it may appear as a "hotspot" by showing high volatility of house prices and simultaneous price increases. Overheated speculation areas are formed by adaptive sellers and buyers who want to realize maximum expectation profit, therefore these areas patterns are defined as hotspot patterns of price volatility.
Korean Journal of Construction Engineering and Management
/
v.13
no.2
/
pp.128-136
/
2012
In this study, we investigated the macroeconomic variables that affect housing prices thus creating a large impact on people's lives as well as the real estate market. For the study, the macroeconomic variables able to influence the House Rental Price (housing price by lease or deposit) were used for an analysis as follows: housing sales price index, household loans rate, total household savings, the number of employees and a multiple regression analysis was performed using a time series for each macroeconomic variable. As a result of the analysis, the House Rental Price was affected by all of four macroeconomic variables. The House Rental Price increased as each variable enlarged. In conclusion, this study may be useful for finding a solution for stabilizing the House Rental Price as well as for the establishment of efficient and sustainable policies for the housing market.
This study analyzed whether a subway accessibility impact on house price is constant since its operation over time or not. The study was approached specifically to answer two research questions. One is "Are there significant temporal variations in the relationship between subway accessibility and housing price transacted after its opening?" The other one is "How the pattern of its temporal variation in housing price is formed as a function of the distance from the nearest station?" The study area is the subway station areas in the Daejeon metropolitan city, South Korea. Its first subway line has started to be opened in 2006 with 12 stations and then opened its additional 10 stations in 2007. It can be more appropriate to observe its impacts of subway accessibility on housing price because it has only one transit line with more than 10-year reaction term to its operation. The study employed alternative models to estimate yearly variation of subway accessibility on house price for the station areas with 500-meter and 1-kilometer radius respectively. While the study originally considered both a hedonic price model with interaction terms of its access distance to yearly transacted housing and a time-variant random coefficient model, the former model was finally selected because it is better fitted. Based on our analysis results, the reaction of house price to its transit line had significant temporal variation over time after opening. In addition, the pattern in its variation from our analysis results indicates that its capitalization impact on house price is over-estimated in its first several years after the opening. In addition, its positive capitalization impact is more effective in the 1000-meter station area than in the 500-meter one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.