• Title/Summary/Keyword: Hourly concentration

Search Result 156, Processing Time 0.026 seconds

Breathing Zone Air Quality in Taegu (인체 호흡 영역에서의 대구시 대기질에 관한 연구)

  • 조완근;손상호
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • Two experiments were conducted to evaluate breathing zone air quality in Taegu, using automatic analyzers for four air quality standards($SO_2$, $NO_2$, CO, and $O_3$). First, air target compounds were measured for 8 to 12 hours in each of two commercial areas and five residential areas. Second, air target compounds were hourly measured for 24 hours in each of two commercial areas, two residential areas, and an industrial complex area. Based on the first experiment the breathing zone air was more polluted in the commercial area as compared to the residential area, while the second experiment showed that the breathing zone air was polluted rather in the residential are3 as compared to the commercial area. The second experiment also indicated that there was some variation of breathing zone air concentration with time and measuring sites. Diurnal variation of breathing zone air concentrations was consistent with previous studies which measured at building height. The highest breathing zone air concentration was shown in Seongseo industrial complex area. An unusual finding of this study was that $SO_2$ concentration in the breathing zone air of Bisandong, a typical residential area of Taegu, was higher than that of other residential areas, even higher than that of Seongseo industrial complex area.

  • PDF

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

Relationship Between Ozone Concentrations and Affecting factors in Seosan City of Korea (충남 서산지역 대기 중의 오존농도와 그 영향인자와의 관련성)

  • Kim, Jun-Kyeom;Jeong, Yong-Jun;Cho, Young-Chae
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.78-88
    • /
    • 2003
  • This study was conducted to investigate the relation between ozone concentration and the affecting factors in Seosan City of Korea from Jan. 2002 to Dec. 2002. We analyzed the air pollutants such as NO$_2$, PM$_{10} $,SO$_2$, CO and the meteorological factors including solar radiation, air temperature, wind speed and relative humidity. The analytical data were taken statistics by SPSS method. The results were as follows: The seasonal average concentration of ozone were detected 35.0 ppb in Spring, 25.4 ppb in Summer, 23.5 ppb in Autumn and 21.4 ppb in Winter. So the difference of concentrations showed significantly in statistics. The hourly ozone concentration in a day was increased at 7-9 AM, peaked at 3-4 PM. The correlation coefficients was negative to ozone concentration and NO$_2$, SO$_2$, CO, relative humidity, but positive to solar radiation, air temperature, wind speed. With stepwise multiple regression analysis on the 8 factors such as NO$ _2$, PMSO$_{10}$,SO$_2$, CO, solar radiation, air temperature, wind speed and relative humidity, the seasonal primary factors were air temperature in spring, relative humidity in summer and solar radiation in autumn and winter. The above results suggest that ozone is the secondary pollutant by photochemical reaction as the concentration of ozone was increased with the raise of solar radiation.

Concentration Changes of Wastewater Effluent Discharge in the Mixing Bone of Masan Sea Outfall (마산만 해양방류 혼합구역에서의 하수농도 분포 변화)

  • Kang See-Whan;You Seung-Hyup;Kim Sang-Ik;Oh Byung-Cheol;Park Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 2001
  • The concentration changes of discharged wastewater effluents due to ambient current flows and density stratifications in an outfall mixing zone have been investigated by using the outfall mixing zone analysis of Huang et al.[1996]. This analysis was applied to Masan sea outfall case and the concentration distributions of wastewater effluent discharges were simulated using three month period of current-meter data measured in the outfall site. Hourly concentration distributions of wastewater effluents were averaged for the period of 15 days which covers the flow conditions of the neap and the spring tidal currents in Masan Bay. The results show that the wastewater concentrations in the Masan outfall mixing zone were very low due to the higher dilution rates during the period of strong ambient currents and less density stratifications. The higher concentrations in the mixing zone were found in August because of strong density stratifications with low ambient currents. The mixing zone was extended to the west coast beach area because of major tidal current directions. This result can be used to explain the dynamical reasons for the depositional distribution of the contaminated sediments in Masan sea outfall area.

  • PDF

Relation with Activity of Road Mobile Source and Roadside Nitrogen Oxide Concentration (도로이동오염원의 활동도와 도로변 질소산화물 농도의 관계)

  • Kim, Jin Sik;Choi, Yun Ju;Lee, Kyoung Bin;Kim, Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2016
  • Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.

Analyses of factors that affect PM10 level of Seoul focusing on meteorological factors and long range transferred carbon monooxide (서울시 미세먼지 농도에 영향을 미치는 요인 분석 : 기상 요인 및 장거리 이동 물질 중 일산화탄소를 중심으로)

  • Park, A.K.;Heo, J.B.;Kim, H.
    • Particle and aerosol research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 2011
  • The objective of the study was to investigate the main factors that contribute the variation of $PM_{10}$ concentration of Seoul and to quantify their effects using generalized additive model (GAM). The analysis was performed with 3 year air pollution data (2004~2006) measured at 27 urban sites and 7 roadside sites in Seoul, a background site in Gangwha and a rural site in Pocheon. The diurnal variation of urban $PM_{10}$ concentrations of Seoul showed a typical bimodal pattern with the same peak times as that of roadside, and the maximum difference of $PM_{10}$ level between urban and roadside was about $14{\mu}g/m^{3}$ at 10 in the morning. The wind direction was found to be a major factor that affects $PM_{10}$ level in all investigated areas. The overall $PM_{10}$ level was reduced when air came from east, but background $PM_{10}$ level in Gangwha was rather higher than the urban $PM_{10}$ level in Seoul, indicating that the $PM_{10}$ level in Gangwha is considerably influenced by that in Seoul metropolitan area. When hourly variations of $PM_{10}$ were analyzed using GAM, wind direction and speed explained about 34% of the variance in the model where the variables were added as a 2-dimensional smoothing function. In addition, other variables, such as diurnal variation, difference of concentrations between roadside and urban area, precipitation, month, and the regression slope of a plot of carbon monooxide versus $PM_{10}$, were found to be major explanatory variables, explaining about 64% of total variance of hourly variations of $PM_{10}$ in Seoul.

Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling (서울지역 시간별 에어로솔 자료를 이용한 화학성분별 광학특성 및 직접 복사강제력의 시간 변화 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.

The Features of Asian Dust Events Originated in Manchuria (만주에서 발원한 황사현상 (II) -2001년 이후 사례를 중심으로-)

  • Kim, Sumin;Chun, Youngsin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.273-286
    • /
    • 2010
  • The northeast part of China(hereafter Manchuria) is one of Asian dust source regions along with Gobi, Inner Mongolia and Loess Plateau. In this study, a geographical survey over the area was carried out to determine its soil characteristics in June 2009. It revealed that some parts of the area, especially near Keerchin desert, consist of alkali clay soil mixed up with sand. Manchuria, where is a vast cornfield, can be a potential source region of Asian dust from fall to following spring after harvesting. The frequency of Asian dust over the region from 1996 to 2009 was examined using 3-hourly GTS SYNOP data and it showed that the occurrence of Asian dust over the region is high in the springtime. It was also revealed that snow cover is the key parameter affecting on the frequency through the analysis of NCEP reanalysis data. To scrutinize the path and structure of Asian dust from Manchuria, the event on 3~4 April 2008 and 25 January 2010 were intensively investigated with regard to features of synoptic weather patterns, satellite imagery, airstream, naked eye-observations, concentrations of PM10, 2.5 and 1.0. For this case, the Asian dust from the area reached to Korea less than a day. However, the duration time of the dust in Korea was short (< 7 hours). The average of hourly PM10 reached up to $340{\mu}g/m^{3}$ at Baengnyeondo during the period. The high PM2.5 and PM1.0 concentrations were also observed at several sites in Korea, indicating that air pollutants could be transported along with the dust.

Estimations of the $SO_2$Dry Deposition Flux at Urban Areas in Korea (우리나라 도시지역의 $SO_2$건성침적 플럭스 산출)

  • 이종범;김용국;박일환
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out estimating the dry deposition flux of $SO_2$at eight urban areas in Korea during one year of 1996. To calculate the deposition flux, deposition velocities were calculated by turbulence parameters estimated from routine meteorological data. Also, hourly averaged $SO_2$concentrations which calculated from air pollution monitoring data of each city were used. The dry deposition velocities were mostly higher in the coastal areas than the other areas, which would be caused by relatively strong wind. And, they were high in the daytime because of turbulence activities. The deposition flux of $SO_2$is mainly related to the atmospheric concentration. The annual average $SO_2$concentration and the deposition flux were 22.62ppb and 1510.52g/$\textrm{km}^2$/hr at Pusan respectively. Also, the flux was higher in winter than other season, which was a significant contribution of exhausted fuel for heating. While the deposition velocity was high to 0.688cm/sec at Yosu in case of strong wind and small cloud cover, the deposition flux was high to 1597.4g/$\textrm{km}^2$/hr at Pusan in case of weak wind and small cloud cover.

  • PDF

Mercury Fluxes from the Nan-Ji-Do Area of Seoul -Application of Micrometerorological Methods (미기상학적 기법을 응용한 난지도지역이 수은교환율 측정연구)

  • 김민영;김기현;이강웅;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.585-594
    • /
    • 2000
  • Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.

  • PDF