Two experiments were conducted to evaluate breathing zone air quality in Taegu, using automatic analyzers for four air quality standards($SO_2$, $NO_2$, CO, and $O_3$). First, air target compounds were measured for 8 to 12 hours in each of two commercial areas and five residential areas. Second, air target compounds were hourly measured for 24 hours in each of two commercial areas, two residential areas, and an industrial complex area. Based on the first experiment the breathing zone air was more polluted in the commercial area as compared to the residential area, while the second experiment showed that the breathing zone air was polluted rather in the residential are3 as compared to the commercial area. The second experiment also indicated that there was some variation of breathing zone air concentration with time and measuring sites. Diurnal variation of breathing zone air concentrations was consistent with previous studies which measured at building height. The highest breathing zone air concentration was shown in Seongseo industrial complex area. An unusual finding of this study was that $SO_2$ concentration in the breathing zone air of Bisandong, a typical residential area of Taegu, was higher than that of other residential areas, even higher than that of Seongseo industrial complex area.
As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.
This study was conducted to investigate the relation between ozone concentration and the affecting factors in Seosan City of Korea from Jan. 2002 to Dec. 2002. We analyzed the air pollutants such as NO$_2$, PM$_{10} $,SO$_2$, CO and the meteorological factors including solar radiation, air temperature, wind speed and relative humidity. The analytical data were taken statistics by SPSS method. The results were as follows: The seasonal average concentration of ozone were detected 35.0 ppb in Spring, 25.4 ppb in Summer, 23.5 ppb in Autumn and 21.4 ppb in Winter. So the difference of concentrations showed significantly in statistics. The hourly ozone concentration in a day was increased at 7-9 AM, peaked at 3-4 PM. The correlation coefficients was negative to ozone concentration and NO$_2$, SO$_2$, CO, relative humidity, but positive to solar radiation, air temperature, wind speed. With stepwise multiple regression analysis on the 8 factors such as NO$ _2$, PMSO$_{10}$,SO$_2$, CO, solar radiation, air temperature, wind speed and relative humidity, the seasonal primary factors were air temperature in spring, relative humidity in summer and solar radiation in autumn and winter. The above results suggest that ozone is the secondary pollutant by photochemical reaction as the concentration of ozone was increased with the raise of solar radiation.
Kang See-Whan;You Seung-Hyup;Kim Sang-Ik;Oh Byung-Cheol;Park Kwang-Soon
Journal of the Korean Society for Marine Environment & Energy
/
v.4
no.2
/
pp.15-24
/
2001
The concentration changes of discharged wastewater effluents due to ambient current flows and density stratifications in an outfall mixing zone have been investigated by using the outfall mixing zone analysis of Huang et al.[1996]. This analysis was applied to Masan sea outfall case and the concentration distributions of wastewater effluent discharges were simulated using three month period of current-meter data measured in the outfall site. Hourly concentration distributions of wastewater effluents were averaged for the period of 15 days which covers the flow conditions of the neap and the spring tidal currents in Masan Bay. The results show that the wastewater concentrations in the Masan outfall mixing zone were very low due to the higher dilution rates during the period of strong ambient currents and less density stratifications. The higher concentrations in the mixing zone were found in August because of strong density stratifications with low ambient currents. The mixing zone was extended to the west coast beach area because of major tidal current directions. This result can be used to explain the dynamical reasons for the depositional distribution of the contaminated sediments in Masan sea outfall area.
Kim, Jin Sik;Choi, Yun Ju;Lee, Kyoung Bin;Kim, Shin Do
Journal of Korean Society for Atmospheric Environment
/
v.32
no.1
/
pp.9-20
/
2016
Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.
The objective of the study was to investigate the main factors that contribute the variation of $PM_{10}$ concentration of Seoul and to quantify their effects using generalized additive model (GAM). The analysis was performed with 3 year air pollution data (2004~2006) measured at 27 urban sites and 7 roadside sites in Seoul, a background site in Gangwha and a rural site in Pocheon. The diurnal variation of urban $PM_{10}$ concentrations of Seoul showed a typical bimodal pattern with the same peak times as that of roadside, and the maximum difference of $PM_{10}$ level between urban and roadside was about $14{\mu}g/m^{3}$ at 10 in the morning. The wind direction was found to be a major factor that affects $PM_{10}$ level in all investigated areas. The overall $PM_{10}$ level was reduced when air came from east, but background $PM_{10}$ level in Gangwha was rather higher than the urban $PM_{10}$ level in Seoul, indicating that the $PM_{10}$ level in Gangwha is considerably influenced by that in Seoul metropolitan area. When hourly variations of $PM_{10}$ were analyzed using GAM, wind direction and speed explained about 34% of the variance in the model where the variables were added as a 2-dimensional smoothing function. In addition, other variables, such as diurnal variation, difference of concentrations between roadside and urban area, precipitation, month, and the regression slope of a plot of carbon monooxide versus $PM_{10}$, were found to be major explanatory variables, explaining about 64% of total variance of hourly variations of $PM_{10}$ in Seoul.
Journal of Korean Society for Atmospheric Environment
/
v.30
no.1
/
pp.1-17
/
2014
Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.
The northeast part of China(hereafter Manchuria) is one of Asian dust source regions along with Gobi, Inner Mongolia and Loess Plateau. In this study, a geographical survey over the area was carried out to determine its soil characteristics in June 2009. It revealed that some parts of the area, especially near Keerchin desert, consist of alkali clay soil mixed up with sand. Manchuria, where is a vast cornfield, can be a potential source region of Asian dust from fall to following spring after harvesting. The frequency of Asian dust over the region from 1996 to 2009 was examined using 3-hourly GTS SYNOP data and it showed that the occurrence of Asian dust over the region is high in the springtime. It was also revealed that snow cover is the key parameter affecting on the frequency through the analysis of NCEP reanalysis data. To scrutinize the path and structure of Asian dust from Manchuria, the event on 3~4 April 2008 and 25 January 2010 were intensively investigated with regard to features of synoptic weather patterns, satellite imagery, airstream, naked eye-observations, concentrations of PM10, 2.5 and 1.0. For this case, the Asian dust from the area reached to Korea less than a day. However, the duration time of the dust in Korea was short (< 7 hours). The average of hourly PM10 reached up to $340{\mu}g/m^{3}$ at Baengnyeondo during the period. The high PM2.5 and PM1.0 concentrations were also observed at several sites in Korea, indicating that air pollutants could be transported along with the dust.
This study was carried out estimating the dry deposition flux of $SO_2$at eight urban areas in Korea during one year of 1996. To calculate the deposition flux, deposition velocities were calculated by turbulence parameters estimated from routine meteorological data. Also, hourly averaged $SO_2$concentrations which calculated from air pollution monitoring data of each city were used. The dry deposition velocities were mostly higher in the coastal areas than the other areas, which would be caused by relatively strong wind. And, they were high in the daytime because of turbulence activities. The deposition flux of $SO_2$is mainly related to the atmospheric concentration. The annual average $SO_2$concentration and the deposition flux were 22.62ppb and 1510.52g/$\textrm{km}^2$/hr at Pusan respectively. Also, the flux was higher in winter than other season, which was a significant contribution of exhausted fuel for heating. While the deposition velocity was high to 0.688cm/sec at Yosu in case of strong wind and small cloud cover, the deposition flux was high to 1597.4g/$\textrm{km}^2$/hr at Pusan in case of weak wind and small cloud cover.
Journal of Korean Society for Atmospheric Environment
/
v.16
no.6
/
pp.585-594
/
2000
Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.