• Title/Summary/Keyword: Hourglass energy

Search Result 9, Processing Time 0.024 seconds

An Analysis of Plastic Stress in Square Bar Impacting Plate (평판에 충동하는 사각봉의 소성응력해석)

  • 김기선;조재웅;최두석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.198-204
    • /
    • 2004
  • Dynamic fracture is investigated in plate applied by impacting bar. Numerical simulations of the experiments are made by using a finite element method(FEM) code, LS-DYNA. The eroding surface-to-surface contact allows between impacting bar and impacted plate. The occurrence of hourglass deformations in an analysis can invalidate results and hourglass energy is minimized to obtain the good accuracy of result. Total, internal and kinetic energies, von Mises plastic stress and X,Y,Z velocities of impacting bar are analyzed in this study.

Synthesis of Aluminum Hydroxide Nanofiber by Electrolysis of Aluminum Plates (전기분해법에 의한 수산화알루미늄 나노화이버 제조)

  • Woo S.H.;Lee M.K.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.108-111
    • /
    • 2006
  • Aluminum hydroxides were synthesized by a simple electrolytic reaction of aluminum plates. The aluminum hydroxide, boehmite (AlO(OH)), was predominantly formed in the application of electrical potential at and above 30V, while the mixture of bayerite ($Al(OH)_3$) and boehmite (AlO(OH)) phases were formed below 20V. The boehmite has a clear fibrous structure controlled on nanometer scale. On the contrary, the bayerite consists of the typical hourglass or semi-hourglass shaped coarse crystals as a result of aggregation of various crystals stacked together. The specific surface area of the boehmite nanofiber was markedly high, approaching at about $302\;m^2/g$.

Synthesis of Aluminum Monohydroxide Nanofiber by Electrolysis of Aluminum Plates

  • Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.428-429
    • /
    • 2006
  • Aluminum hydroxides were synthesized by a simple electrolytic reaction of aluminum plates. The aluminum monohydroxide, boehmite(AlO(OH)), was predominantly formed by the application of an electrical potential above 30V, while the mixture of the bayerite$(Al(OH)_3)$ and boehmite(AlO(OH)) phases were formed below 20V. The boehmite has a clear fibrous structure which is controlled on a nanometer scale. On the contrary, the bayerite consists of the typical hourglass or semi-hourglass shaped coarse crystals as a result of an aggregation of the various crystals stacked together. The specific surface area of the boehmite nanofiber was remarkably high, reaching about $300m^2/g$.

  • PDF

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

A function space approach to study rank deficiency and spurious modes in finite elements

  • Sangeeta, K.;Mukherjee, Somenath;Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.539-551
    • /
    • 2005
  • Finite elements based on isoparametric formulation are known to suffer spurious stiffness properties and corresponding stress oscillations, even when care is taken to ensure that completeness and continuity requirements are enforced. This occurs frequently when the physics of the problem requires multiple strain components to be defined. This kind of error, commonly known as locking, can be circumvented by using reduced integration techniques to evaluate the element stiffness matrices instead of the full integration that is mathematically prescribed. However, the reduced integration technique itself can have a further drawback - rank deficiency, which physically implies that spurious energy modes (e.g., hourglass modes) are introduced because of reduced integration. Such instability in an existing stiffness matrix is generally detected by means of an eigenvalue test. In this paper we show that a knowledge of the dimension of the solution space spanned by the column vectors of the strain-displacement matrix can be used to identify the instabilities arising in an element due to reduced/selective integration techniques a priori, without having to complete the element stiffness matrix formulation and then test for zero eigenvalues.

Promotion of mental health by PungmulPanGut (one form of K-culture) -focusing on the ensemble Better Than Medicine (eBTM) performance. YouTube; https://youtu.be/SSenbSwI_5c

  • Ko, Kyung Ja;Cho, Hyun-Yong
    • CELLMED
    • /
    • v.12 no.1
    • /
    • pp.1.1-1.2
    • /
    • 2022
  • Mental health is attributed to person's well-being, abilities and productivity. The purpose of this study is to suggest the effects of K-culture to people in adversity. It is PungmulPanGut, represented by traditional Korean play culture. Pungmul is a performance with four percussion instruments, Janggu (Korean hourglass drum), Buk (barrel shaped drum), Jing (large gong), Kkwaenggwari (small gong), and play. In Korean, "pan" means that it's a place to do something. Gut means to make a wish. The ensemble Better Than Medicine (eBTM) is a team that has trained and worked with Gamuak (歌,舞,樂; singing, dancing, playing) for a long time, but is not perfect (we refer this as 2% lacking in music). The characteristic of our team is that we share joy while voluntarily participating and doing what we like. It is a combination of singing, dancing, playing musical instruments, and exciting people. There is wind-like energy and there is mutual cooperation, not competition. As we concentrate, we become immersed in each other's breathing and movement. So it makes us forget the hard situation, the hardships, the pain, and so on. In the meantime, our pleasures peak and share happy energy with each other. Even though we are two percent less skilled, our sense of happiness doubles. Music together is not competition but cooperative work and healing. Therefore, we suggest that PungmulPanGut can be better K-culture than medicine in promoting mental health.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF

Vehicle Collision Simulation for Roadblocks in Nuclear Power Plants Using LS-DYNA (LS-DYNA를 이용한 원자력발전소의 로드블록에 대한 차량 충돌 시뮬레이션)

  • SeungGyu Lee;Dongwook Kim;Phill-Seung Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • This paper introduces a simulation method for the collision between roadblocks and vehicles using LS-DYNA. The need to evaluate the performance of anti-ram barriers to prepare for vehicle impact has increased since vehicle impact threats have been included as a design criterion for nuclear power plants. Anti-ram barriers are typically certified for their performance through collision experiments. However, because Koreas has no performance testing facilities for anti-ram barriers, their performance can only be verified through simulations. LS-DYNA is a specialized program for collision simulation. Various organizations, including NCAC, distributes numerical models that have been validated for their accuracy with collision tests. In this study, we constructed a finite element model of the most critical vehicle barrier module and simulated collision between roadblocks and vehicles. The calculated results were verified by applying the validation criteria for vehicle safety facility collision simulations of NCHRP 179.