• Title/Summary/Keyword: Hounsfield

Search Result 165, Processing Time 0.02 seconds

Development of an Algorithm for Predicting the Thermal Distribution by using CT Image and the Specific Absorption Rate

  • Hwang, Jinho;Kim, Aeran;Kim, Jina;Seol, Yunji;Oh, Taegeon;Shin, Jin-sol;Jang, Hong Seok;Kim, Yeon Sil;Choi, Byung Ock;Kang, Young-nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1584-1588
    • /
    • 2018
  • During hyperthermia therapy, cancer cells are heated to a temperature in the range of $40{\sim}45^{\circ}C$ for a defined time period to damage these cells while keeping healthy tissues at safe temperatures. Prior to hyperthermia therapy, the amount of heat energy transferred to the cancer cells must be predicted. Among various non-invasive methods, the thermal prediction method using the specific absorption rate (SAR) is the most widely used method. The existing methods predict the thermal distribution by using a single constant for the mass density in one organ through assignment. However, because the SAR and the bio heat equation (BHE) vary with the mass density, the mass density of each organ must be accurately considered. In this study, the mass density distribution was calculated using the relationship between the Hounsfield unit and the mass density of tissues in preceding research. The SAR distribution was found using a quasi-static approximation to Maxwell's equation and was used to calculate the potential distribution and the energy distributions for capacitive RF heating. The thermal distribution during exposure to RF waves was determined by solving the BHE with consideration given to the considering contributions of heat conduction and external heating. Compared with reference data for the mass density, our results was within 1%. When the reconstructed temperature distribution was compared to the measured temperature distribution, the difference was within 3%. In this study, the density distribution and the thermal distribution were reconstructed for the agar phantom. Based on these data, we developed an algorithm that could be applied to patients.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.

Reliability of Skeletal Muscle Area Measurement on CT with Different Parameters: A Phantom Study

  • Dong Wook Kim;Jiyeon Ha;Yousun Ko;Kyung Won Kim;Taeyong Park;Jeongjin Lee;Myung-Won You;Kwon-Ha Yoon;Ji Yong Park;Young Jin Kee;Hong-Kyu Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.624-633
    • /
    • 2021
  • Objective: To evaluate the reliability of CT measurements of muscle quantity and quality using variable CT parameters. Materials and Methods: A phantom, simulating the L2-4 vertebral levels, was used for this study. CT images were repeatedly acquired with modulation of tube voltage, tube current, slice thickness, and the image reconstruction algorithm. Reference standard muscle compartments were obtained from the reference maps of the phantom. Cross-sectional area based on the Hounsfield unit (HU) thresholds of muscle and its components, and the mean density of the reference standard muscle compartment, were used to measure the muscle quantity and quality using different CT protocols. Signal-to-noise ratios (SNRs) were calculated in the images acquired with different settings. Results: The skeletal muscle area (threshold, -29 to 150 HU) was constant, regardless of the protocol, occupying at least 91.7% of the reference standard muscle compartment. Conversely, normal attenuation muscle area (30-150 HU) was not constant in the different protocols, varying between 59.7% and 81.7% of the reference standard muscle compartment. The mean density was lower than the target density stated by the manufacturer (45 HU) in all cases (range, 39.0-44.9 HU). The SNR decreased with low tube voltage, low tube current, and in sections with thin slices, whereas it increased when the iterative reconstruction algorithm was used. Conclusion: Measurement of muscle quantity using HU threshold was reliable, regardless of the CT protocol used. Conversely, the measurement of muscle quality using the mean density and narrow HU thresholds were inconsistent and inaccurate across different CT protocols. Therefore, further studies are warranted in future to determine the optimal CT protocols for reliable measurements of muscle quality.

Differentiation between Clear Cell Sarcoma of the Kidney and Wilms' Tumor with CT

  • Choeum Kang;Hyun Joo Shin;Haesung Yoon;Jung Woo Han;Chuhl Joo Lyu;Mi-Jung Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1185-1193
    • /
    • 2021
  • Objective: Clear cell sarcoma of the kidney (CCSK) is the second-most common but extremely rare primary renal malignancy in children after Wilms' tumor. The aims of this study were to evaluate the imaging features that could distinguish between CCSK and Wilms' tumor and to assess the features with diagnostic value for identifying CCSK. Materials and Methods: We reviewed the initial contrast-enhanced abdominal-pelvic CT scans of children with CCSK and Wilms' tumor between 2010 to 2019. Fifty-eight children (32 males and 26 females; age, 0.3-10 years), 7 with CCSK, and 51 with Wilms' tumor, were included. The maximum tumor diameter, presence of engorged perinephric vessels, maximum density of the tumor (Tmax) of the enhancing solid portion, paraspinal muscle, contralateral renal vein density, and density ratios (Tmax/muscle and Tmax/vein) were analyzed on the renal parenchymal phase of contrast-enhanced CT. Fisher's exact tests and Mann-Whitney U tests were conducted to analyze the categorical and continuous variables, respectively. Logistic regression and receiver operating characteristic curve analyses were also performed. Results: The age, sex, and tumor diameter did not differ between the two groups. Engorged perinephric vessels were more common in patients in the CCSK group (71% [5/7] vs. 16% [8/51], p = 0.005). Tmax (median, 148.0 vs. 111.0 Hounsfield unit, p = 0.004), Tmax/muscle (median, 2.64 vs. 1.67, p = 0.002), and Tmax/vein (median, 0.94 vs. 0.59, p = 0.002) were higher in the CCSK compared to the Wilms' group. Multiple logistic regression revealed that engorged vessels (odds ratio 13.615; 95% confidence interval [CI], 1.770-104.730) and Tmax/muscle (odds ratio 5.881; 95% CI, 1.337-25.871) were significant predictors of CCSK. The cutoff values of Tmax/muscle (86% sensitivity, 77% specificity) and Tmax/vein (71% sensitivity, 86% specificity) for the diagnosis of CCSK were 1.97 and 0.76, respectively. Conclusion: Perinephric vessel engorgement and greater tumor enhancement (Tmax/muscle > 1.97 or Tmax/vein > 0.76) are helpful for differentiating between CCSK and Wilms' tumor in children aged below 10 years.

Coronary Artery Lumen Segmentation Using Location-Adaptive Threshold in Coronary Computed Tomographic Angiography: A Proof-of-Concept

  • Cheong-Il Shin;Sang Joon Park;Ji-Hyun Kim;Yeonyee Elizabeth Yoon;Eun-Ah Park;Bon-Kwon Koo;Whal Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.688-698
    • /
    • 2021
  • Objective: To compare the lumen parameters measured by the location-adaptive threshold method (LATM), in which the inter- and intra-scan attenuation variabilities of coronary computed tomographic angiography (CCTA) were corrected, and the scan-adaptive threshold method (SATM), in which only the inter-scan variability was corrected, with the reference standard measurement by intravascular ultrasonography (IVUS). Materials and Methods: The Hounsfield unit (HU) values of whole voxels and the centerline in each of the cross-sections of the 22 target coronary artery segments were obtained from 15 patients between March 2009 and June 2010, in addition to the corresponding voxel size. Lumen volume was calculated mathematically as the voxel volume multiplied by the number of voxels with HU within a given range, defined as the lumen for each method, and compared with the IVUS-derived reference standard. Subgroup analysis of the lumen area was performed to investigate the effect of lumen size on the studied methods. Bland-Altman plots were used to evaluate the agreement between the measurements. Results: Lumen volumes measured by SATM was significantly smaller than that measured by IVUS (mean difference, 14.6 mm3; 95% confidence interval [CI], 4.9-24.3 mm3); the lumen volumes measured by LATM and IVUS were not significantly different (mean difference, -0.7 mm3; 95% CI, -9.1-7.7 mm3). The lumen area measured by SATM was significantly smaller than that measured by LATM in the smaller lumen area group (mean of difference, 1.07 mm2; 95% CI, 0.89-1.25 mm2) but not in the larger lumen area group (mean of difference, -0.07 mm2; 95% CI, -0.22-0.08 mm2). In the smaller lumen group, the mean difference was lower in the Bland-Altman plot of IVUS and LATM (0.46 mm2; 95% CI, 0.27-0.65 mm2) than in that of IVUS and SATM (1.53 mm2; 95% CI, 1.27-1.79 mm2). Conclusion: SATM underestimated the lumen parameters for computed lumen segmentation in CCTA, and this may be overcome by using LATM.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Assessing Abdominal Aortic Aneurysm Progression by Using Perivascular Adipose Tissue Attenuation on Computed Tomography Angiography

  • Shuai Zhang;Hui Gu;Na Chang;Sha Li;Tianqi Xu;Menghan Liu;Ximing Wang
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.974-982
    • /
    • 2023
  • Objective: Recent studies have highlighted the active and potential role of perivascular adipose tissue (PVAT) in atherosclerosis and aneurysm progression, respectively. This study explored the link between PVAT attenuation and abdominal aortic aneurysm (AAA) progression using computed tomography angiography (CTA). Materials and Methods: This multicenter retrospective study analyzed patients with AAA who underwent CTA at baseline and follow-up between March 2015 and July 2022. The following parameters were obtained: maximum diameter and total volume of the AAA, presence or absence of intraluminal thrombus (ILT), maximum diameter and volume of the ILT, and PVAT attenuation of the aortic aneurysm at baseline CTA. PVAT attenuation was divided into high (> -73.4 Hounsfield units [HU]) and low (≤ -73.4 HU). Patients who had or did not have AAA progression during the follow-up, defined as an increase in the aneurysm volume > 10 mL from baseline, were identified. Kaplan-Meier and multivariable Cox regression analyses were used to investigate the association between PVAT attenuation and AAA progression. Results: Our study included 167 participants (148 males; median age: 70.0 years; interquartile range: 63.0-76.0 years), of which 145 (86.8%) were diagnosed with AAA accompanied by ILT. Over a median period of 11.3 months (range: 6.0-85.0 months), AAA progression was observed in 67 patients (40.1%). Multivariable Cox regression analysis indicated that high baseline PVAT attenuation (adjusted hazard ratio [aHR] = 2.23; 95% confidence interval [CI], 1.16-4.32; P = 0.017) was independently associated with AAA progression. This association was demonstrated within the patients of AAA with ILT subcohort, where a high baseline PVAT attenuation (aHR = 2.23; 95% CI, 1.08-4.60; P = 0.030) was consistently independently associated with AAA progression. Conclusion: Elevated PVAT attenuation is independently associated with AAA progression, including patients of AAA with ILT, suggesting the potential of PVAT attenuation as a predictive imaging marker for AAA expansion.