• Title/Summary/Keyword: Hot-press

Search Result 499, Processing Time 0.036 seconds

Influence of Surface Finishing Material Types to Formaldehyde and Volatile Organic Compounds Emission from Plywood

  • Kim, Ki-Wook;Oh, Jin-Kyoung;Lee, Byoung-Ho;Kim, Hyun-Joong;Lee, Young-Kyu;Kim, Sung-Hun;Kim, Gwan-Eui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.39-45
    • /
    • 2008
  • Formaldehyde and volatile organic compounds (VOCs) are emitted from wood-based panels that have been made using wood particles, wood fiber, wood chips, formaldehyde-based resins and so on. In this study, we examined formaldehyde and total VOCs (TVOC) emission behaviors for plywood overlaid with water-soluble phenolic resin impregnated linerboard (PL), and two kinds of surface materials (decorative veneer and pre-impregnated finishing foil) that were adhered onto the PL that named DPL and PPL. EVA (ethyl vinyl acetate) was used to overlay the decorative veneer and pre-impregnated finishing foil on the plywood with water-soluble phenolic resin impregnated linerboard by a hot press instrument. The debonding test and accelerated aging test were conducted to assess their mechanical properties. Formaldehyde and TVOC emission concentrations were measured using the FLEC method and a VOC Analyzer, respectively. The debonding test results of PL, DPL and PPL were 1.2, 1.5, and $0.5N/mm^2$, respectively. The surface appearance of the samples were not changed after the accelerated aging test. The PL and DPL exhibited reduced formaldehyde and TVOC emission levels, respectively. In the case of PPL, the VOC value was relatively higher than those of PL and DPL.

Fatigue behavior of concrete beams reinforced with HRBF500 steel bars

  • Li, Ke;Wang, Xin-Ling;Cao, Shuang-Yin;Chen, Qing-Ping
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • The purpose of this study was to investigate experimentally the fatigue performance of reinforced concrete (RC) beams with hot-rolled ribbed fine-grained steel bars of yielding strength 500MPa (HRBF500). Three rectangular and three T-section RC beams with HRBF500 bars were constructed and tested under static and constant-amplitude cyclic loading. Prior to the application of repeated loading, all beams were initially cracked under static loading. The major test variables were the steel ratio, cross-sectional shape and stress range. The stress evolution of HRBF500 bars, the information about crack growth and the deflection developments of test beams were presented and analyzed. Rapid increases in deflections and tension steel stress occured in the early stages of fatigue loading, and were followed by a relatively stable period. Test results indicate that, the concrete beams reinforced with appropriate amount of HRBF500 bars can survive 2.5 million cycles of constant-amplitude cyclic loading with no apparent signs of damage, on condition that the initial extreme tensile stress in HRBF500 steel bars was controlled less than 150 MPa. It was also found that, the initial extreme tension steel stress, stress range, and steel ratio were the main factors that affected the fatigue properties of RC beams with HRBF500 bars, whose effects on fatigue properties were fully discussed in this paper, while the cross-sectional shape had no significant influence in fatigue properties. The results provide important guidance for the fatigue design of concrete beams reinforced with HRBF500 steel bars.

Relationship between hardness and plastically deformed structural steel elements

  • Nashid, Hassan;Clifton, Charles;Ferguson, George;Hodgson, Micheal;Seal, Chris;Choi, Jay-Hyouk
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.619-637
    • /
    • 2015
  • A field based non-destructive hardness method is being developed to determine plastic strain in steel elements subjected to seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: what was the extent of plastic deformation and what effect does that have on post-earthquake steel properties? A non-destructive hardness test method is being used to determine a relationship between hardness and plastic strain in active link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch are being analysed in the field and laboratory. Test results to date show clear evidence that this method is able to give a good relationship between plastic strain and demand. This paper presents significant findings from this project to investigate the relationship between hardness and plastic strain that warrant publication prior to the completion of the project. Principal of these is the discovery that hot rolled steel beams carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

Synthesis and Properties of In-situ $MoSi_2$/W Composites ($MoSi_2$/W 복합재료의 합성과 성질에 관한 연구)

  • Jang, Dae-Kyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.938-944
    • /
    • 1998
  • $MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

  • PDF

The Study of Instrumental Analysis of Deposits on Paper Machine and Holes/spots in Paper (제지공정 침착이물질 및 종이내 불순물성분의 기기분석적 고찰)

  • 마금자;이복진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.7-16
    • /
    • 1997
  • The constituents of deposits on paper machine and holes/spots in paper have been studied by consequently a combination of analytical techniques, such as FTIR, Py-GC-MS, and. EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as preliminary analysis technique. The analysis of organic components were carried out with the use of a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analysed by SEM equipped with an EDS analyzer after pyrolysis at 59$0^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic contents of fatty acid ester and starch, and the inorganic contents of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable AKD and CaCO$_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP that were streamed out from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streak on coating.

  • PDF

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

A Study on Extrusion Forces in Hot Extursion of Al-Si Alloys (AI-Si 합금의 열간압출에 있어서 압출압력에 관한 연구)

  • Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.837-844
    • /
    • 1994
  • To investigate that the theoretical formulas for extrusion forces are applicable to the manufacturing plant, the maximum extrusion forces were calculated from Siebel's and Geleji's formulas and also measured using 550 ton extrusion press. Parameters such as flow stress, $K_f$, angle of dead metal zone, $\alpha$ were obtained experimentally in order to calculate the maximum extrusion forces by the the theoretical formulas, and it was showed that the results were reliable as the deformation efficient factor, $\eta _f$ was determined to be less than 0.5. The maximum extrusion forces calculated from Siebel's formula and Geleji's formula for the angle of dead metal zone, $\alpha = 50^{\circ}$ were approached to the experimental results. However, it was found that Siebel's formula is more useful to apply to the manufacturing plant.

  • PDF

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.