• Title/Summary/Keyword: Hot-machining

Search Result 80, Processing Time 0.059 seconds

Cutting method of tungsten carbide material using hot machining (고온가공기법을 이용한 초경소재 가공기술)

  • 이채문;이득우;정우섭;김상기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.365-369
    • /
    • 2004
  • The Advantages of hot machining are the reduction of cutting forces, tool wear, and the increase of material removal rates. In this study, a hot-machining using gas flame heating characteristics of milling by CBN tip was analyzed, and the influence of the surface temperature and the depth of cut on the tool life were investigated. The results show that hot machining of tungsten carbide-alloyed is more effective than conventional machining. In addition, some advantages obtained from hot machining, such as decrease of tool wear and cutting force, high surface quality.

  • PDF

A Study on Cutting Method of Tungsten Carbide Material Using Hot Machining (고온가공기법을 이용한 초경소재 가공기술에 관한 연구)

  • Choung Y. H.;Cho Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.315-318
    • /
    • 2004
  • The Advantages of hot machining are the reduction of cutting forces, tool wear, and the increase of material removal rates. In this study, a hot-machining characteristics of milling by CBN tip was exprimentely analyzed, and the influence of the surface temperature and the depth of cut on the tool life were investigated. The selection of a heating method for obtaining ideal temperature of metals in machining is important. Faulty heating methods could induce unwanted structural changes in the workpiece and increase the cost. This study uses gas flame heating. It is obtained that tungsten carbide-alloyed has a recrystallisation temperature range of $800-1000^{\circ}C$ which is the high heating temperature that might induce unwanted structural changes. If it is performed at temperatures higher than $800^{\circ}C$ in machining, the possibility of unwanted structural changes and the increased wear of tool can be shown. Consequently, in hot machining of tungsten carbide-alloy, this study has chosen $400^{\circ}C-600^{\circ}C$ because the heating temperature might be appropriate in view of the cost and workpiece considerations. The results of this study experimentally shows a new machining method for tungsten carbide-alloyed that decreases the wear rate of machining tools

  • PDF

Machinability Evaluation of Sl7C Steel according to Workpiece Temperature (제관용 Sl7C의 소재온도에 따른 가공성 평가)

  • 정영훈;김전하;강명창;김정석;김정근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.493-497
    • /
    • 2002
  • In the part industry, pipe has required high accuracy in surface roughness and size. Especially, when producing the high frequency welding pipe, cutting process is very important as the finishing process that remove the hot welding bead. The objective of this paper is to investigate the hot machining high frequency welded pipe by simulation and experimental tests. To test the cutting process as hot machining, all cutting environment is reproduced in turning with heating system, and the test is accomplished by comparing with room temperature machining and hot machining in consideration of cutting force, tool wear and cutting temperature.

  • PDF

Evaluation of Cutting force and Surface accuracy on Drilling process by Temperature variation (온도 변화에 따른 드릴가공의 절삭력 변화와 가공정밀도 평가)

  • 이상천;정우섭;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.895-898
    • /
    • 1997
  • These days, most of new materials, which is in use widely as cutting process materials have a characteristic in common. That is hard cutting. So, it happens that hardness by cutting temperature. And hardness on cutting process has an effect on tool wear or life shortness of tools. To solve these problems hot-machining is proposed. When a material is heated, organization of material is soften. So cutting process becomes easy. When such a hot-machining method applies on drilling process and then heated material is processed, cutting force is less than usual drilling process cutting force. In this paper, when a material is heated, cutting force on drilling process is measured. It is decided that the best suitable temperature area. And it suggest that the better hot-machining condition as surface accuracy is measured.

  • PDF

A study of development of Rapid Foam Shaping process using hot tool (열 공구를 이용한 쾌속 폼 가공 공정 개발에 관한 연구)

  • 김효찬;이상호;송민섭;양동열;박승교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.55-59
    • /
    • 2004
  • Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the step of manufacturing trial molds. In order to realize three dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, traditional machining process spends a lot of time in cutting product and the remained material causes trouble such as inconvenience for clean. In this work, a new machining process using the hot tool has been proposed to overcome those limitations. In the process, the hot tool moves the predetermined path and the heat of the tool decomposes the remained material. In order to set up the process, the hot tool to satisfy requirements is designed and the material thermal properties are obtained using the DSC and TGA machine. The relationships between process parameters and thermal radius of the tool are obtained through experiment.

  • PDF

Evaluation of Cutting Characteristics for Hot-Drilling of Stainless Steel (스테인리스강의 고온드릴 작업시 절삭성 평가)

  • 이민국;심재형;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.287-290
    • /
    • 2002
  • Stainless steel used widely in various fields of industry have the characteristics of difficulty-to-cut. This difficulty comes from its peculiarity, for example work hardening, vibration, etc. And these peculiarity on the cutting process have an effect on tool wear or life shortness of tools. To solve these problems several method have been developed. Hot-machining is one way of these method. when a material is heated, organization of material is soften. So cutting process becomes easy. When such a hot-machining method applies on drilling process and then heated material is processed, cutting force is less than usual drilling process cutting force. In this paper, cutting force is compared heated SUS 304 with usual SUS 304. And shape of chips is also compared.

  • PDF

A Study on the Plasma Hot Machining to Improve the Machinability of Inconel 718 (Inconel 718 의 절삭성 개선을 위한 플라즈마 고온 절삭 가공법에 관한 연구)

  • 김진남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.67-76
    • /
    • 1995
  • An experimental study of hot machining has performed to improve the machinability of Inconel718. This experiment used plasma are for heating materials and Whisker0reinforce aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results from both conventional and plasma hot machining of Inconel 718 are compared. The experiments with plasma heating demonstrated the following effectiveness. 1)The cutting force was reduced with increasing surface temperature of workpiece from 450$^{\circ}C$ up to 720$^{\circ}C$ as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts.3) The depth of cut notch were at promary cutting tool was significantly reduced.

  • PDF

A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process (쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구)

  • Kim Hyo-Chan;Lee Sang-Ho;Park Seung-Kyo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.177-186
    • /
    • 2006
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. Therefore, a new rapid manufacturing process, Rapid Heat Ablation process (RHA) using the hot tool, has been developed. In this paper, the hot tool for RHA process is designed to minimize radius of heat affected zone. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. In order to verify the numerical results, surface temperature of the hot tool is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. The practicality and effectiveness of the designed hot tool have been verified through experiments.

Development of Rapid Heat Ablation process Using Rotary Hot tool (회전 열공구를 이용한 쾌속 열용삭 공정 개발에 관한 연구)

  • Kim H.C.;Park S.H.;Yang D.Y.;Park S.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.224-230
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. This paper introduces a new rapid manufacturing process called Rapid Heat Ablation process (RHA) using the rotary hot tool to overcome limitations of traditional machining process. The rotary hot tool to satisfy requirements of RHA process is designed and produced. In order to examine relationships between kerfwidth and process parameters such as heat input, speed of tool and speed of revolution, experiments were carried out. In addition, relationship between the kerfwidth and the effective heat input was obtained. Based on the experimental results, double-curved shape was ablated to show the validity of proposed process. In the procedure, the rough cut and fine cut were performed according to the conditions of process parameters without tool change process. The practicality and effectiveness of the proposed process have been verified through ablation of three-dimensional shape.

  • PDF