• Title/Summary/Keyword: Hot-film anemometer

Search Result 22, Processing Time 0.019 seconds

Study About a New Propulsion System Using CRP( I ) (Flow interaction mechanism of a counter-rotating propeller) (CRP를 사용한 추진기관에 관한 연구( I ) (CRP의 유동상호작용에 관하여))

  • 정진덕;이동호
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.3-8
    • /
    • 1995
  • The anemometer measurements were obtained from stationary hot-film probe mounted between the forward and rear rotors of a model CRP which rotated the forward and different directions. Data collection was done at several locations between rotors. To establish rotor-rotor interaction flow mechanism that contributes noise increasement of the CRP, methods of simple and the double condition-at sampling have been developed. The former uses to find similarity of the wake the later fixes the forward rotor position in time or space and permits averaging the mean wake at any fixed rotor angular location. The variation of the forward wake Is strongly depending upon the rear rotor location.

  • PDF

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

A Study on the Evaluation of Hydrodynamic Performance of Trileaflet Prosthetic Heart Valves (삼엽식 인공판막의 수력학적 성능평가에 관한 연구)

  • 김혁필;이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.147-156
    • /
    • 1997
  • Various prosthetic heart valves have been developed and used clinically, but they have problems, such as thrombogenecity, hemoltsis, high cost and low durability. New types of trileaflet polymer heart valves have been developed in order to use them as inlet and outlet valves in a ventricular assist device. The aim of this study is to determine the hydrodynamic effectiveness of the newly designed trileaflet polymer valves and their feasibility for temporary use in the blood pumps. Trileaflet polymer valves are made of polyurethane, because of its good blood compatibility, high tonsil strength and good resistance to fatigue. An in vitro experimental investigation was perf'ormed in order to ev91ua1e hydrodynamic performance of the trileaflet polymer valves having different design and fabrication tech- niques. The St. Jude Medical valve (SJMV) and floating-type monoleaflet polymer valve (MLPV) were also tested The pressure drop across the valve, leakage volume, and the flow patterns mere investigated for valves. The result of comparative tests showed that the trileaflet polymer valves had a better hydrodynamic performance than the others. TPV which has two stable membrane shape showed the lowest back flow. The pressure hops of TPVs were lower than that of MLPV, but slightly higher than SJMV. The hydrodynamic performance of valves under the pulastile flow showed the similar results as steady flow. The velocity profiles and turbulent intensities were measured at the distal sites of valves using a hot-film anemometer. Central flow was maintained in trileaflet polymer valves, and the maximum turbulent intensities were lower in TPVs comparing to MLPV.

  • PDF

Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature (등온으로 유지되는 가는 열선주위를 흐르는 나노유체의 대류열전달계수 측정실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper describes a measuring apparatus that can be used to appraise the effectiveness of nanofluids as new heat-transfer-enhancing fluids. A couple of apparatuses using fine hot wires as sensors have been proposed for this purpose; however, they have a technical weakness related to the uncertain working conditions of the sensor. The present method uses the convective heat transfer coefficient from a hot wire as an indication of the heat transfer effectiveness of the nanofluid, where the temperature of the wire remains constant during the experiment. The operating principle and experimental procedure are explained in detail, and the validity of the system is tested with pure base fluids. The effects of particle concentration, velocity, and temperature on the heat transfer coefficients of the nanofluids are discussed comprehensively using the experimental data for graphite nanolubrication oil.

Influence of the Unsteady Wake on the Flow and Heat Transfer in a Linear Turbine Cascade (비정상 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yun, Sun-Hyeon;Sim, Jae-Gyeong;Kim, Dong-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The influence of unsteady wake on the flow and heat transfer characteristics in a four-vane linear cascade was experimentally investigated. The unsteady wake was generated with four rotating rectangular plates located upstream of the cascade. Tested inlet Reynolds number based on chord length was set to 66,000 by controlling free-stream velocity. A hot-wire anemometer system was employed to measure turbulent velocity components. For the convective heat transfer coefficients measurement on turbine blade surface, thermochromic liquid crystal and gold film Intrex were used. It was found that the unsteady wake enhances the turbulent motion in the cascade passage and accordingly promotes the development and transition of boundary layer. It was found that the heat transfer coefficients on the blade surface increase as the plate rotating speed increases. However, the increasing of heat transfer coefficients is not significant in the case that Strouhal number is higher than 0.503.

Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade (사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon Hyun;Sim, Jae Kyung;Woo, Chang Soo;Lee, Dae Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

A Study on Separation Control by Local Suction in Front of a Hemisphere in Laminar Flow (층류경계층 내 반구 전방의 국부적인 흡입에 의한 표면 박리 제어)

  • Kang, Yong-Duck;An, Nam-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.92-100
    • /
    • 2018
  • Vortical systems are considered a main feature to sustain turbulence in a boundary layer through interaction. Such turbulent structures result in frictional drag and erosion or vibration in engineering applications. Research for controlling turbulent flow has been actively carried out, but in order to show the effect of vortices in a turbulent boundary layer, it is necessary to clarify the mechanism by which turbulent energy is transferred. For this purpose, it is convenient to demonstrate and capture phenomena in a laminar boundary layer. Therefore, in this study, the interactions of disturbed flow around a hemisphere on a flat plate in laminar flow were analyzed. In other words, a street of hairpin vortices was generated following a wake region formed after flow separation occurred over a hemisphere. Necklace vortices surrounding the hemisphere also appeared due to a strong adverse pressure gradient that brought high momentum fluid into the wake region thereby leading to an increase in the frequency of hairpin vortices. To mitigate the effect of these necklace vortices, local suction control was applied through a hole in front of the hemisphere. Flow visualization was recorded to qualitatively determine flow modifications, and hot-film measurements quantitatively supported conclusions on how much the power of the hairpin vortices was reduced by local wall suction.