• Title/Summary/Keyword: Hot-Die Forging

Search Result 145, Processing Time 0.022 seconds

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

A study on a hot forging process monitoring for measurement of indirect forging force in flange bolt forming of titanium alloys (티타늄 합금 플랜지 볼트 성형에서의 단조력 간접 측정을 위한 열간 단조 공정 모니터링에 관한 연구)

  • Ha, Seok-Jae;Choi, Doo-Sun;Lee, Dong-Won;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2021
  • The objective of this study is to introduce the new possibility of sensing technology based on inductive displacement sensors to monitor the status of wheel position in the hot forging process. In order to validate effectiveness of proposed sensing technology, the indirect forging force measurement with displacement sensor was applied into a typical closed hot forging die-set used for the manufacturing of flange bolts. The locations to implement the displacement sensor were selected carefully by simulating forming process and static structural. From the measurement results of the forging force change during one hot forging cycle, it was found that the proposed monitoring system can provide useful information to understand the detailed behaviors of die-set in the closed hot forging process.

An Analysis of Hot Closed-Die Forging to Reduce Forging Load (단조하중 감소를 위한 열간 형단조공정 해석)

  • 김헌영;김중재;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

The Hot Forging of Small Size Gas Turbine Disks (소형가스터빈 디스크의 얼간단조)

  • Cha, D.J.;Song, Y.S.;Kim, D.K.;Kim, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF

Computer-Aided Process Planning and Die Design for Hot Forging of H-Shaped Plane Strain Components (평면변형 H-형재의 열간단조, 공정설계 및 금형설계)

  • Park, J.C.;Kim, B.M.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 1994
  • This research describes some developments of computer-aided process planning and die design for hot forging products of H-shaped plane strain produced by the press. The system is composed of three main modules(process planning module, die design module and simulation module) which are used independently or in all. Systm capabilities include as follows: 1. In die design module, using the results of process planning module, the shape and size of bolcker and finish die in each operation are determined and the ouput id generated in graphic form for manufacturing drawing. 3. In simulation module, the flow pattern of workpiece and the load/stroke curve are approximately predicted. Design rules for process planning and die design are extracted from plasticity theories, handbooks, relevant references and empirical know-how of field experts in hot forging companies. The developed system provides poweful capabilities for process planning and die design of hot forging products.

  • PDF

Finite Element Analysis of a Piercing and Trimming Process Having a Spring-Attached Die in Hot Former Forging (열간포머 단조공정중 스프링부착 금형을 가진 피어싱과 트리밍 동시공정의 유한요소해석)

  • 문호근;정재헌;전만수
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • In this paper, the rigid-viscoplastic finite element method is employed together with an iteratively force-balancing method to analyze a piercing and trimming process with a spring-attached die in hot former forging. An actual piercing and trimming process with a spring-attached die is investigated in detail and a generalized analysis model is proposed. A multi-stage hot former forging process is simulated under various spring constants. The analyzed results are discussed in order to investigate the effects of spring constants on the metal flow lines and the formed shapes. Then an optimal piercing and trimming process in hot former forging is devised.

A Study on the Development of Idler by Hot Closed-die Forging (열간 형단조에 의한 아이들러 개발에 대한 연구)

  • 정호승;조종래;박희천
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.199-203
    • /
    • 2003
  • Idler of excavator are large product with diameter 500 - 600 mm and parts of a power transmit device. The object of the paper is developed large products by hot closed-die forging. The forging process which is proposed from numerical analysis and various tests is developed a large products with good quality. To estimate the design process parameters such as working load, temperature and flash thickness so on, numerical analysis are used by DEFORM 2D. To obtain a flow stress data and optimal forging temperature is carried out hot compression and tensile test at a various temperature range. Developed product is tested mechanical properties of elongation, hardness and tensile strength so on. Test results are presented excellent mechanical properties.

  • PDF

Experiment of Turbine Blade Hot Forging Process using Model Material and SLA Prototype Die Set (모델재료와 SLA 시금형을 이용한 터빈블레이드 열간단조공정의 모사실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, J.R.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 1995
  • In this paper, an experimental study of a hot forging process is carried out using plasticine and the die set manufactured with the aid of rapid prototyping. In order to manufacture the die set, Stereolithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is performed using palsticine and the SLA prototype die set. Through the experiment, it has been shown that SLA prototype is suitable to the die set for the plasticine workpiece, and the formability and the forming load of turbine blade forging are predicted.

  • PDF

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각법에 따른 열간 단조 금형의 수명 평가)

  • 김병민;김동환
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.408-413
    • /
    • 2003
  • Dies may have to be replaced for a number of reasons, such as changes in dimensions due to die wear or plastic deformation, deterioration of the surface finish, break down of lubrication and cracking or breakage. In this paper, die cooling methods have been suggested to improve die service life considering die wear and plastic deformation in hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. It was found that the use of die with cooling hole was more effective than that of direct cooling method to increase the die service life for spindle component.