• 제목/요약/키워드: Hot water supply load model

검색결과 6건 처리시간 0.017초

지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링 (LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System)

  • 박영칠
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

공동주택용 태양열원 급탕시스템의 운전성능 연구 (A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses)

  • 이윤규;황인주
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

호텔, 병원, 업무용 건물의 에너지 부하 특성 비교 (Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea)

  • 박화춘;정모
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

수평형 지중열교환기를 이용한 건물일체형 지열시스템의 도입타당성 분석 (The feasibility study for the building integrated geothermal system using the horizontal heat exchanger)

  • 채호병;남유진;윤성훈
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.81-87
    • /
    • 2015
  • Recently, in order to prevent increasing energy usages in the international community, many countries have attempted to develop the innovative renewable energy systems. Among the renewable energy systems, Ground source heat pump(GSHP) system which supply the heating, cooling and hot water in the building has been attracted by its stability of heat production and high efficiency. However, the initial drilling costs become very expensive and the construction period takes longer the other systems, because GSHP system needs more than 100 m depth drilling. In this study, in order to reduce initial costs of the GSHP, the building integrated geothermal system using the horizontal heat exchanger was developed. The heating and cooling load in the standard housing model was calculated by a simulation and the system design capacity in the high-rise apartment was decided by the total load. Based on the system design capacity, the high-rise apartments were applied to a BIGS and vertical GSHP system and there are analyzed about initial costs. In the result, the initial cost of BIGS could reduce 24% of the initial cost of the vertical GSHP system.

가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발 (A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study)

  • 유상석;이영덕;안국영
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 이온교환막 연료전지는 전세계적인 에너지 고갈 문제와 온실효과에 대한 대응책의 하나이다. 특히, 이온교환막 연료전지는 전기화학반응에 의해 전기를 생산함과 동시에 열을 발생하기 때문에 가정용으로 적용하기에 적당하다. 가정용 연료전지의 열관리 목적은 연료전지가 최적조건에서 운전할 수 있도록 적절히 온도를 제어해 주는 것으로, 본 연구에서는 부하 변화 시 가정용 연료전지 시스템의 응답 특성과 열관리 특성을 알아보기 위한 해석 모델을 개발하였다. 열관리 해석 모델은 연료전지의 온도를 조절하기 위한 펌프와 열교환기로 구성된 1차측, 주택에 온수를 공급하기 위한 탱크와 펌프 계통의 2차 측으로 구성되었다. 부하를 순차적으로 증가시킬 때와 감소시킬 때를 구분하여 열관리 계통의 응답특성 을 확인하였다. 결과적으로 탱크의 초기 승온에 많은 시간이 소요되기 때문에 부하를 다단으로 오랜 시 간 동안 서서히 증가시키면서 시스템 응답 특성을 확인하였다. 또한, 본 연구에서는 가정용 연료전지의 부하 변화시의 열관리 특성을 고려한 운전 전략에 대해서도 조사하였다.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.