• Title/Summary/Keyword: Hot idling

Search Result 4, Processing Time 0.02 seconds

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Nano-particles emission characteristics of GDI vehicles using Engine Exhaust Particle Sizer (Engine Exhaust Particle Sizer를 통한 GDI 자동차에서 발생하는 나노미세입자 배출특성 분석)

  • Jang, Jihwan;Lee, Jongtae;Kim, Kijoon;Kim, Jeongsoo;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.95-96
    • /
    • 2014
  • In this study, the nano-particle emitted from Gasoline Direct Injection(GDI) vehicles was measured using the Engine Exhaust Particle Sizer(EEPS) on a chassis dynamometer. In addition, driving mode were divided into cold start mode(CVS-75, NEDC) and hot start mode(NIER-6, NIER-9) to evaluated the characteristics in the various operating conditions. The Particle Number(PN) concentration was analyzed for various driving patterns, i.e., acceleration, deceleration, idling, cruising and the phases of mode. In a result, Total concentration of PN for size was concentrated from 50 to 100 nm and acceleration represents the highest concentration among the driving pattern. It is believed that the increases quantity of fuel, and mixture will be richer than other patterns.

  • PDF

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.