• Title/Summary/Keyword: Hot gas system

Search Result 377, Processing Time 0.029 seconds

The Actual Conditions and Needs for Housing Remodeling among the Elderly Households with Adult Children (노부모-성인자녀 동거 가구의 주택개조 실태 및 요구)

  • Kim, Mi-Hee;Oh, Ji-Young
    • Journal of the Korean housing association
    • /
    • v.20 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • The purpose of this study was to examine the household characteristics, the actual residential environment of the elderly living with their offsprings together in Gwangju. We also evaluated their satisfaction with the needs for remodeling of their houses and the different opinions about those things between the elderly and their off springs. We used comparative and descriptive T-test in statistical analysis. The results were as follows. There were more families living in the detached houses than those living in the apartments. The average size of the houses was 100.8 square meters. The mean residence period was 13.5 years. The sons were usually the legal householders. The residents who experienced remodeling before reassigned the furniture and installed the bathtub, which was designed to be sat on comfortably in a common. A few residents installed safety system such as alarms for incident fire or gas, convenient knobs for handling and faucets for running hot or cold water separately. After the installation of alarms, convenient knobs of windows or door, Customer satisfaction for those things were quite high. But that for the installation of safety bar were the lowest in contrast. The most things the old wanted to change were to rearrange bedrooms and bathrooms on the first floor and to decorate them in westernized styles. They didn't need to set up safety bars or shower instrument for modulating heights. The second generation wanted to install the blinds or curtains more than the third generations.

Hyper-peritectic Al-Ti Alloys as In-Situ composites through Rapid Solidification (급냉응고법에 의한 In-Situ 복합재료로서의 과포정 Al-10wt%Ti 합금(I))

  • Kim, Hye-Seong;Geum, Dong-Hwa;Kim, Geung-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.263-268
    • /
    • 1999
  • In this study, a new concept of aluminum-matrix composites and the possibility of in-situ processing are suggested, and preliminary results on AI- Ti system are presented. Fine powders of AI-lO% Ti were prepared by the gas atomization so that fine $Al_3Ti$ formed into flake shape. A 25v/o $Al_3Ti/Al$ composite sample was made by the pow­d er metallurgy process involving hot extrusion. Microstructure and mechanical behavior both at room temperature and high temperatures were analysed by OM, SEM, TEM and tension test. Microstructural characteristics and mechanical properties of the composites exhibited similar behavior to those of $SiC_w/2124$ composites. Merits and drawbacks of the $Al_3Ti/Al$ composites are discussed together with a possibility of further improvement.

  • PDF

Development Test of Alcohol Burner for Turbopump Real-propellant Test Facility (터보펌프 실매질 시험설비를 위한 알코올버너 개발시험)

  • Kim, Jin-Sun;Han, Yeoung-Min;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.79-86
    • /
    • 2014
  • A turbopump real-propellant test facility(TPTF) is to verify the performance of a turbopump unit(TPU) based on liquid oxygen and kerosene. One of the most important sub-facilities is a hot-gas generation system which makes the driving force of the TPU with an alcohol burner. The alcohol burner generates the required flow rates and temperature at the facility using high pressure air and ethanol. In the study, the verification tests of the alcohol burner which was manufactured entirely with domestic technology were performed and fabrication technique and operation skill for the burner could be obtained ahead of the construction of the facility. Two burners will be operated simultaneously for the real-propellant test of 75tf class turbopump and satisfy the power requirement from the turbine of the TPU.

The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test (가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

Encapsulation of ZnSe Quantum Dots within Silica by Water-in-oil Microemulsions (마이크로에멀전을 이용한 실리카에 담지된 ZnSe 양자점 제조)

  • Lee, Areum;Kim, Ji Hyeon;Yoo, In Sang;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.328-331
    • /
    • 2011
  • ZnSe quantum dots (QDs) were prepared by employing water-containing Dioctyl sodium sulfosuccinate (AOT) reversed micelles (microemulsions) and the silica-encapsulated ZnSe QDs were obtained by a direct injection of tetraethyl orthosilicate (TEOS) into the microemulsion system. When the QDs were coated by silica, well-defined spherical shapes were formed and the average size of the QDs was near 7 nm. In addition, the photoluminescence (PL) efficiency of the QDs was reduced from 8.0 to 1.1% as they were encapsulated by silica. However, the solid layers of the silica-encapsulated ZnSe QDs on gold surfaces showed the excellent photostability. In particular, they are cadmium free and thus, less toxic. Moreover, the present method does not require a hot reaction temperature or extremely toxic H2Se gas as a Se precursor. Accordingly, the method can be a safer and more economical process for producing silica-encapsulated ZnSe QDs, which may be a potential media for biosensors.

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

Low Temperature Thermal Desorption (LTTD) Treatment of Contaminated Soil

  • Alistair Montgomery;Joo, Wan-Ho;Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.44-52
    • /
    • 2002
  • Low temperature thermal desorption (LTTD) has become one of the cornerstone technologies used for the treatment of contaminated soils and sediments in the United States. LTTD technology was first used in the mid-1980s for soil treatment on sites managed under the Comprehensive Environmental Respones, Compensation and Liability Act (CERCLA) or Superfund. Implementation was facilitated by CERCLA regulations that require only that spplicable regulations shall be met thus avoiding the need for protracted and expensive permit applications for thermal treatment equipment. The initial equipment designs used typically came from technology transfer sources. Asphalt manufacturing plants were converted to direct-fired LTTD systems, and conventional calciners were adapted for use as indirect-fired LTTD systems. Other innovative designs included hot sand recycle technology (initially developed for synfuels production from tar sand and oil shale), recycle sweep gas, travelling belts and batch-charged vacuum chambers, among others. These systems were used to treat soil contaminated with total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs) and dioxin with varying degrees of success. Ultimately, performance and cost considerations established the suite of systems that are used for LTTD soil treatment applications today. This paper briefly reviews the develpoment of LTTD systems and summarizes the design, performance and cost characteristics of the equipment in use today. Designs reviewed include continuous feed direct-fired and indirect-fired equipment, batch feed systems and in-situ equipment. Performance is compared in terms of before-and-after contaminant levels in the soil and permissible emissions levels in the stack gas vented to the atmosphere. The review of air emissions standards includes a review of regulations in the U.S. and the European Union (EU). Key cost centers for the mobilization and operation of LTTD equipment are identified and compared for the different types of LTTD systems in use today. A work chart is provided for the selection of the optmum LTTD system for site-specific applications. LTTD technology continues to be a cornerstone technology for soil treatment in the U.S. and elsewhere. Examples of leading-edge LTTD technologies developed in the U.S. that are now being delivered locally in global projects are described.

  • PDF

Study of morphology on the Oxidation and the Annealing of High Burn-hp $UO_2$ Spent Fuel (고연소도 사용후 핵연료의 가열산화와 고온가열을 통한 미세조직 변화고찰)

  • Kim Dae Ho;Bang Jae Geun;Yang Yong Sik;Song Keun Woo;Lee Hyung Kwon;Kwon Hyung Moon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.301-307
    • /
    • 2005
  • The morphology of the high burnup $UO_2$ spent fuel, which was oxidized and annealed in a PIA (Post Irradiation Annealing) apparatus, has been observed. The high burnup fuel irradiated in Ulchin Unit 2, average rod burnup 57,000 MWd/tU, was transported to the KAERI's PIEF. The test specimen was used with about 200 mg of the spent $UO_2$ fuel fragment of the local burnup 65,000 MWd/tU. This specimen was annealed at $1400^{\circ}C$ for 4hrs after the oxidation for 3hrs to grain boundary using the PIA apparatus in a hot-cell. In order to oxidize the grain boundary, the oxidation temperature increased up to $500^{\circ}C$ and held for 3hrs in the mixed gas (60 ml He and 100 ml STD-air) atmosphere. The amount of 85Kr during the whole test process was measured to know the fission gas release behavior using the online system of a beta counter and a gamma counter. The detailed micro-structure was observed by a SEM to confirm the change of the fuel morphology after this test. As the annealing temperature increased, the fission products were observed to move to the grain surface and grain boundary of the $UO_2$ matrix. This specimen was re-structured through the reduction process, and the grain sizes were distributed from 5 to $10\;{\mu}m$.

  • PDF

FIMS WAVELENGTH CALIBRATION VIA AIRGLOW LINE OBSERVATIONS (대기광 관측을 통한 과학기술위성 1호 원자외선분광기(FIMS)의 파장 보정)

  • Lee, Dae-Hee;Seon, Kwang-Il;Park, Jang-Hyun;Jin, Ho;Yuk, In-Soo;Nam, Uk-Won;Han, Won-Yong;Park, Jae-Woo;Lee, Ji-Na;Ryu, Kwang-Sun;Min, Kyoung-Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.391-398
    • /
    • 2004
  • Far-ultraviolet Imaging Spectrograph (FIMS) is the main payload of the Korea's first scientific micro satellite STSAT-1, which was launched at Sep. 27 2003 successfully. Major objective of FIMS is observing hot gas in the Galaxy in FUV bands to diagnose the energy flow models of the interstellar medium. Supernova remnants, molecular clouds, and Aurora emission in the geomagnetic pole regions are specific targets for pointing observation. Although the whole system was calibrated before launch, it is essential to perform on-orbit calibration for data analysis. For spectral calibration, we observed airglow lines in the atmosphere since they provide good spectral references. We identify and compare the observed airglow lines with model calculations, and correct the spectral distortion appeared in the detector system to improve the spectral resolution of the system.