• 제목/요약/키워드: Hot gas parts

검색결과 45건 처리시간 0.024초

열발전소자의 자동차 엔진 냉각시스템 적용 연구 (Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator)

  • 박명환;허태영;양영준
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.133-140
    • /
    • 2016
  • 제벡 및 펠티에 효과를 이용하는 열발전소자 또는 열전소자는 많은 산업 분야에서 활용되어지고 있다. 특히 군사용으로서 북극 및 남극에서 활동하는 잠수함에서부터 실생활에서 우리가 늘 접하는 냉온수기에 이르기까지 온도차를 이용하여 전력을 생산하거나 또는 전력을 투입하여 온도차를 발생시키는 장치의 효용성은 충분히 입증되었다고 할 수 있다. 자동차 분야에서 제벡효과를 이용한 열발전소자의 활용은 주로 고온의 배기가스를 이용하는데 집중되어 왔다. 본 연구에서는 자동차 내 엔진을 냉각 시킨 후 배출되는 고온의 냉각수를 활용하여 보조전력을 생산할 수 있는 가능성을 조사하였다. 그 결과 전력보조장치의 형태에 따라 전력생산량이 다르며 본 실험에서는 최대 약 1.5 V를 나타내었다.

열음향 냉장시스템 (II) : 제작 및 실험 (Thermoacoustic Refrigerating System, Part II : Implementation and Experiment)

  • 하재규;안철용;성굉모
    • 한국음향학회지
    • /
    • 제14권6호
    • /
    • pp.13-20
    • /
    • 1995
  • 본 논문에서는 열음향 냉장시스템을 실제로 설계, 제작하고 그 동작을 확인하였다. 제작된 시스템은 4인치의 중음부 스피커로 구동되며 스피커 하우징, 챔버, 스택하우징, 스택, 열교환기, 가는관, 그리고 공명구로 구성되었으며 내부에 10기압의 He을 채워 실험하였다. 실행 중 온도하강측정을 위하여 T 타입의 열전쌍을 열교환기에 부착하였고, 내부음압측정용 콘덴서 마이크로폰을 장착하였다. 스피커의 열손상을 막고 고온 열교환기를 냉각시키기 위하여 냉각수를 공급하였다. 실제 실험을 위하여 제작된 열음향기관의 전기적인 임피던스를 측정하여 공진특성을 파악하였는데, 실험 결과 설계치와는 약간 다르게 340Hz로 구동하는 것이 효율적이었다. 이러한 해석을 기초로 실제 냉장실험을 수행한 결과 $30^\circ{C}$의 조건하에서 340Hz, 50W로 구동하였을 때 $16^\circ{C}$의 냉장효과를 관찰하였다. 관찰된 냉각효과와 설계치의 차이를 규명하기 위하여 제작된 열음향기관의 미비점을 고찰하였는 바, 냉각부의 단열이 제일 중요한 문제임을 파악하였으며 그외의 보완이 필요한 사항은 이후의 진행될 연구의 과제로서 제시하였다.

  • PDF

CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각 (Rapid cooling of injection mold for high-curvature parts using CO2 cooling module)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Mar-M-247 합금의 액상확산접합부 고온 특성 거동 (High Temperature Behavior of Liquid Diffusion Bonded Joints of Mar-M-247 Alloy)

  • 손명숙;안종기;이동엽;김준기;강석철;김홍규
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.248-250
    • /
    • 2017
  • Mar-M-247 합금은 고온에서의 우수한 강도로 Ni기 초내열합금 중 항공용 가스터빈 부품에 가장 널리 사용되는 소재 중 하나이다. Mar-M-247을 이용하여 터빈 노즐, 터빈 블레이드와 같이 Hot section 용으로 제작되는 부품은 복잡한 형상 등의 이유로 접합 공정을 적용하고 있다. 본 연구에서는 Mar-M-247 합금의 액상확산접합부에 대한 고온 특성 거동을 고찰하고자 하였다. 이에, $1,121^{\circ}C$에서 7분간 확산접합을 실시하여 고온 강도 변화를 관찰하였다. 시험 결과, 접합 시편은 $649^{\circ}C$에서 모재 대비 약 70%, $825^{\circ}C$에서 약 60%, $1,000^{\circ}C$에서 약 45%의 강도치를 나타내었다. 접합시간에 따른 강도 변화를 관찰한 결과, 720분 접합한 시편은 $649^{\circ}C$에서 모재와 유사한 강도치를 나타내었으며, 이는 One-body 부품에 가까운 일체형 확산 접합이 이루어진 것으로 판단된다.

  • PDF

No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

  • Park, Jong-Ho;Trippe, Sascha;Krichbaum, Thomas;Kim, Jae-Young;Kino, Motoki;Bertarini, Alessandra;Bremer, Michael;de Vicente, Pablo
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.73.2-74
    • /
    • 2015
  • The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure - such as jets or winds from hot accretion flows - around Sgr A* caused by accretion of material from G2. The interferometric closure phases (which are zero if the spatial brightness distribution of the target is symmetric, and deviate from zero otherwise) remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ${\approx}2.5$ mas along the major axis, ${\approx}0.4$ mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, respectively; we thus probe spatial scales on which the jets of radio galaxies are suspected to convert magnetic into kinetic energy. As probably less than 0.2 Jy of the flux from Sgr A* can be attributed to accretion from G2, one finds an effective accretion rate ${\eta}M{\leq}1.5{\times}10^9kg/s{\approx}7.7{\times}10^{-9}M_{earth}/yr$ for material from G2. Exploiting the kinetic jet power-accretion power relation of radio galaxies, one finds that the rate of accretion of matter that ends up in jets is limited to $M{\leq}10^{17}kg/s{\approx}0.5M_{Earth}/yr$ less than about 20% of the mass of G2. Accordingly, G2 appears to be largely stable against loss of angular momentum and subsequent (partial) accretion at least on time scales ${\leq}1$ year.

  • PDF