• Title/Summary/Keyword: Hot air injection/extraction

Search Result 4, Processing Time 0.017 seconds

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

Hot Air Injection/Extraction Method for the Removal of Semi-Volatile Organic Contaminants from Soils (토양내 저휘발성 유류오염물 제거를 위한 고온공기 주입/추출기술 연구)

  • Gu Chung-Wan;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Contamination of soils and groundwater by leakage of petroleum compounds from underground storage tanks (USTs) has become great environmental issues. Conventional methods such as soil vapor extraction (SVE) used for the remediation of unsaturated soils contaminated with volatile organic compounds might not be applied for the removal of semi-volatile organic compounds such as diesel fuels and PCBs, which have low volatility and high hydrophobicity. The objective of this study is to develop a hot air injection method to remove semi-volatile compounds. Additionally, operation parameters such as temperature, air flow rate, and water content are evaluated. Experimental results show that diesel ranged organics (DROs) are removed in the order of volatility of organic compounds. As expected, removal efficiency of organics is highly dependent on the temperature. It is considered that more than $90\%$ of organic contaminants whose carbon numbers range between 17 and 22 can be removed efficiently by the hot air injection-extraction method (modified SVE) over the $100^{\circ}C$. It is also found that increased air flow rate resulted in high removal rate of contaminants. However, air flow rate over 40 cc/min is not effective for the operation aspects, due to mass transfer limitation on the volatilization rate of the contaminants. The effect of the water content on the decane removal is minimal, but some components show large dependence on the removal efficiency with increasing water content.

고온공기주입시 지중온도에 의한 ISR의 변화

  • 박기호;박민호;이의신;신항식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.91-94
    • /
    • 2003
  • A field pilot-scale demonstration of an enhanced SVE using hot air injection and extraction was conducted to remove diesel range compounds from subsurface soils at a site in J-city, Korea. The objective of demonstration was to evaluate field ISR by intrinsic microorganism after an application study of hot air-SVE technology and to calculate each first-order kinetic with soil temperature. TPH concentration of contaminated soil at the site was approximately 2, 000~11, 000 mg/kg (average 6, 900 mg/kg) with depths greater than 5 m bgs. The 1st-order reaction rate constants, k were 0.0438(@about5$0^{\circ}C$), 0.0564(@4$0^{\circ}C$), and 0.0685(@33$^{\circ}C$) d-1 respectively.

  • PDF

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.