• Title/Summary/Keyword: Hot Wire Anemometer

Search Result 172, Processing Time 0.021 seconds

Experimental Investigation on the Turbulence Augmentation of a Gun-type Gas Burner by Slits and Swirl Vanes

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1819-1828
    • /
    • 2004
  • The purpose of this paper is to investigate the effects of slits and swirl vanes on the turbulence augmentation in the flow fields of a gun-type gas burner using an X-type hot-wire probe. The gun-type gas burner adopted in this study is composed of eight slits and swirl vanes located on the surface of an inclined baffle plate. Experiment was carried out at a flow rate of 450 ι/min in burner model installed in the test section of subsonic wind tunnel. Swirl vanes playa role diffusing main flow more remarkably toward the radial direction than axial one, but slits show a reverse feature. Consequently, both slits and swirl vanes remarkably increase turbulence intensity in the whole range of a gun-type gas burner with a cone-type baffle plate.

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

An experimental study on rotating stall in vaneless diffuser of a centrifugal compressor (원심압축기 깃 없는 디퓨저에서의 선회실속에 관한 실험적 연구)

  • Sin, Yu-Hwan;Kim, Gwang-Ho;Son, Byeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.153-161
    • /
    • 1998
  • This study describes the results of the analysis of measured rotating stall signal in a centrifugal compressor with vaneless diffuser. Unsteady flow and rotating stall in vaneless diffuser were investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. Experiments were carried out in several impeller rotating speeds, at different radius ratios. Single hot -wire was used to study the characteristics of rotating stall. As a result, the abrupt rotating stall was detected at all measured impeller rotating speeds and the several flow coefficients which are less than 0.16. The number of the stall cell was one at all measured rotational speeds, and the rotating direction was the same as that of the impeller. As the flow rate decreased, the profile of the phase averaged radial velocity component with time changed from a sawtooth to a sine wave.

A Study on the Flow Characteristics of the Intake Port and Cylinder Generated by a Tumble Intensifying Valve (텀블강화형 밸브에 의한 흡기포트 및 실린더내의 유동 특성에 관한 연구)

  • 이기형;이창식;정재우;전문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.183-196
    • /
    • 1997
  • Gas flow field within the cylinder which is called a tumble flow is important factor in improving lean combustion stability. In this study, steady state flow tests were performed to quantify tumble ratio of flowfields generated by a tumble intensifying valve(TIV). In addition, velocity and fluctuation profiles in an intake port and flowfields in th cylinder were inspected using a hotwire anemometer and a laser light sheet method with various TIV configurations. These experimental results show that installated TIV has a great effect on flow field distribution in an intake port and test effects enhance a tumble flow in the cylinder.

  • PDF

Concentration Fluctuation of a Coaxial $CO_2$/Air Jet Excited Acoustically (음파가진에 의한 동축 $CO_2$/공기 제트의 농도변동 특성 연구)

  • Han, Yong-Shik;Kim, Myung-Bae;Kim, Tae-Kwon
    • 연구논문집
    • /
    • s.23
    • /
    • pp.57-62
    • /
    • 1993
  • An experimental investigation was carried out to study the characteristics of concentration of a coaxial jet being tone excited and consisting of $CO_2$, and air. The concentration in a binary gas mixture was measured by using the hot-wire anemometer and flow visualization was performed by the schlieren technique. In the case of excited flow, it is found that acoustic energy is partially transferred to RMS concentration to enhance mixing.

  • PDF

A Study on The Characteristics of the 2-Dimensional Jet (2차원 분류특성에 관한 연구)

  • Kim, Kyung-Hoon;Park, Sang-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-51
    • /
    • 1989
  • Free jet was investigated experimentally and numerically in range of Reynolds number from 9900 to 21000. The working fluid was air; the mean velocity components and turbulent quantities were measured by a hot-wire anemometer. In numerical computations, the governing partial differential equations of elliptic type were solved with conventional k- ${\epsilon}$ turbulence model. The measurements show that the jet increased linearly in flow direction, and that similarity for each turbulent quantity such as Reynolds shear stress, or turbulent kinetic energy was revealed in the fully developed region. The computational results show good agreements with experiments.

  • PDF

Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature (등온으로 유지되는 가는 열선주위를 흐르는 나노유체의 대류열전달계수 측정실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper describes a measuring apparatus that can be used to appraise the effectiveness of nanofluids as new heat-transfer-enhancing fluids. A couple of apparatuses using fine hot wires as sensors have been proposed for this purpose; however, they have a technical weakness related to the uncertain working conditions of the sensor. The present method uses the convective heat transfer coefficient from a hot wire as an indication of the heat transfer effectiveness of the nanofluid, where the temperature of the wire remains constant during the experiment. The operating principle and experimental procedure are explained in detail, and the validity of the system is tested with pure base fluids. The effects of particle concentration, velocity, and temperature on the heat transfer coefficients of the nanofluids are discussed comprehensively using the experimental data for graphite nanolubrication oil.

Measurement of Air Motion in a Diesel Engine Combustion Chamber using Hot Wire Anemometer (열선유속계에 의한 디이젤기관 연소실내의 공기유동 측정)

  • U, Dae-Seong;Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.86-94
    • /
    • 1987
  • In order to examine the flow motion in a combustion chamber of a motored diesel engine, the variation of instantaneous are velocity at a fixed point in combustion chamber was measured by the constant temperature hot wire anemometer, varing engine speed, shroud shape and shroud position. The results are summerized as follows: 1. The variation of air velocity in a combustion chamber is closely related with the valve timing and piston velocity. 2. The air velocity in the cylinder at suction stroke is being increased and maximized at 60$^{\circ}$ ABDC in compression stroke and then decreased at the e.v.o. in expansion stroke. 3. The mean velocity using shroud valve was less than no shroud valve. However the turbulent intensity using shroud valve was larger than no shroud valve. 4. The turbulent intensity with 90$^{\circ}$shroud valve was larger than that of 120$^{\circ}$shroud valve, and 90$^{\circ}$shroud valve at 180$^{\circ}$shroud position had the largest turbulent intensity.

  • PDF

Measurement of Air Motion in a Diesel Engine Combustion Chamber using Hot Wire Anemometer (열선유속계에 의한 디이젤기관 연소실내의 공기유동 측정)

  • Dae-Sung Woo;Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.40-40
    • /
    • 1987
  • In order to examine the flow motion in a combustion chamber of a motored diesel engine, the variation of instantaneous are velocity at a fixed point in combustion chamber was measured by the constant temperature hot wire anemometer, varing engine speed, shroud shape and shroud position. The results are summerized as follows: 1. The variation of air velocity in a combustion chamber is closely related with the valve timing and piston velocity. 2. The air velocity in the cylinder at suction stroke is being increased and maximized at 60° ABDC in compression stroke and then decreased at the e.v.o. in expansion stroke. 3. The mean velocity using shroud valve was less than no shroud valve. However the turbulent intensity using shroud valve was larger than no shroud valve. 4. The turbulent intensity with 90°shroud valve was larger than that of 120°shroud valve, and 90°shroud valve at 180°shroud position had the largest turbulent intensity.