• Title/Summary/Keyword: Hot Press Forming (HPF)

Search Result 13, Processing Time 0.017 seconds

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

Effects of Grain Size on Carbon Diffusion in an Ultra-Low Carbon Steel for Hot Press Forming (열간 프레스 성형공정 적용을 위한 극저탄소강의 탄소확산에 미치는 결정립 크기의 영향)

  • Kang, Soo Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.883-889
    • /
    • 2012
  • Carbon diffusion of ultra low carbon steel treated at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated using optical microscopy, SAM, EPMA, and Micro Vickers. The martensite patterns of the specimens treated at $880^{\circ}C$ and $930^{\circ}C$ were different. Martensite in the ferrite region was found in the specimen treated at $880^{\circ}C$ because of grain boundary diffusion. Such phenomena is explained by a carbon diffusion model.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.