• Title/Summary/Keyword: Hot Forming

Search Result 446, Processing Time 0.023 seconds

Forming processes and the Value of the Natural Heritage of the Guksubawi in Ulleung Island, Korea (울릉도 국수바위 주상절리의 형성과정과 자연유산적인 가치)

  • Woo, Hyeon Dong;Park, Jin Soo;Oh, Han Sol;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Trachytic cliff showing a unique appearance like noodle is located in the Mt. Bipa, Seo-myeon, Ulleung island. This cliff is named 'Guksubawi'(means noodle-like rock) by its appearance. There is cliffs on three sides except north side and each side shows semi-vertical columnar joints obviously. This columnar joint has different character in appearance and mineralogy according to their direction and this tendency is remarkable in contrast between the east side and the west side. The consideration of the cooling processes after eruption of trachytic lava based on the contrast of both columnar joints dealt in the full text. In the morphological approach, the columnar joint on the east side has narrower space and chisel-like marks than the west side. And the joint walls are sharper on the east side than west side too. In the mineralogical approach, then, trachyte on the west side has bigger phenocrysts than the east side and is showing glomeroporphyritic texture and weak trachytic textures of lath of plagioclase. Around these differences between the east side and the west side, it modelled the typical temperature gradient while the cooling processes of hot rocks and the east side, consequently, corresponds to exterior of the entire trachytic volume. The columnar joint of the Guksubawi has the value of landscape and scientific importance about the forming processes of the columnar joint of trachytic lava, and so supposed it has enough values to preserved as natural heritage.

Prevention of Swelling and Quality Improvement of Sunchang Traditional Kochujang by Natural Additives (천연첨가물을 이용한 전통고추장의 유통중 팽창억제 및 품질개선)

  • 정도연;송미란;신동화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.605-610
    • /
    • 2001
  • To suppress the gas forming caused by some yeast in the pack of traditional kochujang prepared at Sunchang area, which is the most severe problem during distribution of commercial products, mustard or horseradish powder as natural preservatives was mixed to the ingredients of kochujang and left for fermentation in clay pot as commercial scale for 180 day. The composition changes including quality and gas formaing in the kochujang containing those additives were monitored physicochemically and organoleptically. The fermented kochujang containing those additives were monitored physicohemically and organoleptically. The fermented kochujang containing 0.6% of horseradish showed lower organic acid content than that of the control but amino type nitrogen content, which is one of the important quality reference of kochujang, was higher in the one containing 0.6% natural preservatives. No color changed in the kochujang containing mustard but L and a value were increased in the kochujang containing horseradish. No difference of free reducing sugars was showed by the addition of those natural preservatives and the addition of 0.6% horseradish to kochujang had completely stopped gas forming during fermentation. The overall quality of the kochujang containing 0.6% horseradish was superior than that of the other treatments.

  • PDF

Instrumental Analysis of Deposits on Paper Machine and Holes/Spots in Paper (제지공정 침착이물질 및 종이내 불순물 성분의 기기분석)

  • Ma, Geum-Ja;Lee, Bok-Jin
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.135-140
    • /
    • 1998
  • The constituents of deposits on paper machine and holes/spots in paper have been analyzed by a combination of analytical techniques, such as FTIR, Py-GC-MS, and EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as a preliminary analysis. The analysis of organic components was carried out with a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analyzed by SEM equipped with an EDS analyzer after pyrolysis at $590^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic components of fatty acid ester and starch, and the inorganic components of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable alkyl keten dimer(AKD) and $CaCO_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that was used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streaks on coating.

  • PDF

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet (알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향)

  • Yoonje Sung;Donggyu Kim;Jungi Seo;Kyunghyun Han;Beomki Hong;Kangmin Kim;Seounguk Heo;Seonghyun Park;Jae-Taek Im;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Properties of the $\beta$-SiC+39vol.%$ZrB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3$를 첨가한 $\beta$-SiC+39vol.%$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jin, Hong-Bum;Park, Gi-Yub;Yea, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1913-1915
    • /
    • 1999
  • The ${\beta}-SiC+ZrB_2$ ceramic composites were hot-press sintered and annealed by adding 1, 2, 3wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at $1950^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 90.79% of the theoretical density and the porosity decreased with increasing $Al_2O_3+Y_2O_3$ contents. Phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_2O_3$ and $\beta$-SiC(15R). Flexural strength showed the highest of 315.46MPa for composites added with 3wt% $Al_2O_3+Y_2O_3$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $5.5328MPa{\cdot}m^{1/2}$ for composites added with 2wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

A Study on the Quantification and Chracterization of Endocrine Disruptor Bisphenoi-A Leaching from Epoxy Resin (에폭시 수지 용출물질에서의 내분비계장애물질 Bisphenol-A의 정량과 용출특성 파악)

  • Bae, Bumhan;Choi, Myoung-soo;Lim, Nam-woong;Jeong, Jae-hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.469-477
    • /
    • 2000
  • Bisphenol-A (BPA), a known endocrine disruptor, is a main building block of epoxy resin which is widely used as a coating agent in residential water storage tanks. Therefore, BPA leaching from the epoxy resin may have adverse effects on human health. The possibility of BPA leaching from three epoxy resins were tested with a modified KS D 8502 method at 20, 50, 75 and $100^{\circ}C$ in deionized water and the specified test water, respectively. BPA leached to the test water was identified using GC-MS and quantified with GC-FID after a sequential extraction and concentration. The results showed that BPA leaching has occurred in all three samples tested. The quantify of BPA leaching from unit area of epoxy resin coating was in the range of $10.677{\sim}273.120{\mu}g/m^2$ for sample A, 29.737~1734.045 for sample B and 52.857~548.778 for sample C depending on the test temperature, respectively. In general, the amount of BPA leaching increased as the water temperature increases. This result implies a higher risk of BPA leaching to drinking water during a hot summer season. In addition, microbial growth, measured by colony forming units, in epoxy coated water tanks was higher than that in a stainless steel tank suggesting that compounds leaching from epoxy resin may support the growth of microorganisms in a residential water holding tank.

  • PDF

A Study on Development of Model Materials Showing Similar Flow Characteristics of Hot Mild Steel at Various Temperatures (고온 연강 유동특성을 상사하는 모델재료 개발에 관한 연구)

  • 이종헌;김영호;배원병;이원화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1161-1171
    • /
    • 1993
  • Model materials are developed to achieve similarity of flow patterns for mild steels in forming processes at high temperatures. The model materials consist of pure plasticine and one or two additives such as resin and lanolin. To verify the similarity of flow patterns between physical modeling and compression of mild steels at high temperatures, ring and compression tests have been carried out with the developed-model materials at various strain rates, temperatures and lubricants. The test results are in good agreement with the flow patterns obtained from upsetting of a mild steel at high temperatures.

Film-Forming Properties of Proteinaceous Fibrous Material Produced from Soybean Fermented by Bacillus natto

  • Park Sang-Kyu;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1053-1059
    • /
    • 2006
  • The effectiveness of a proteinaceous fibrous material formed during commercial fermentation of soy protein (PFSP) and cysteine addition were evaluated in order to improve on the properties of soy protein-based films. Nine types of films were prepared at pH 7, 9, and 11, with heat treatments at $70^{\circ}C\;and\;90^{\circ}C$ for 30 min, by casting 5% (w/w) PFSP aqueous solution, containing 2.25% (w/w) glycerol, on to polystyrene plates. The tensile strength (TS) of films ranged from 3.88 to 6.87 MPa. The highest puncture strength (PS) was observed with pH 7.0 films prepared from PFSP solution heated at $70^{\circ}C$ (P<0.05). Alkaline pH and temperature caused a decrease in both the TS and PS of the films. The thickness of films ranged from $58\;to\;74{\mu}m$. Water vapor permeabilities of the films decreased with increasing pH and temperature. To produce films from PFSP, pH value of 7.0 to 9.0 and heat treatment of $70^{\circ}C\;to\;90^{\circ}C$ were needed. A soluble nature of PFSP films in water might be useful for preparation of hot water-soluble pouches. Cysteine addition could be necessary to produce films with increased TS and enhanced barrier properties. The combination treatment that provided the best combination of barrier and mechanical properties was the PFSP film prepared at pH 7.0 with addition of 1% cysteine. The films were good oxygen barriers.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Effect of B2O3 Addition on Thermal, Structure, and Sealing Properties V2O5-P2O5-ZnO Glass (B2O3첨가에 따른 V2O5-P2O5-ZnO계 유리의 물성 및 구조와 봉착특성)

  • Sung, Aram;Kim, Yurian;Kim, Hyungsun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.549-555
    • /
    • 2016
  • We have investigated a glass-forming region of $V_2O_5-P_2O_5-ZnO$ glass and the effects of the addition of modifier oxides ($B_2O_3$) to the glass systems as a sealing material to improve the adhesion between the glass frits and a soda lime substrate. Thermal properties and coefficient of thermal expansion were measured using a differential scanning calorimetry, a dilatometer and a hot stage microscopy. Structural changes and interfacial reactions between the glass substrate and the glass frit after sintering (at $400^{\circ}C$ for 1 h) were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The results showed that the adhesion strength increases as the content of $B_2O_3$ at 5 mol% increases because of changes in the structural properties. It seems that the glass structures change with $B_2O_3$, and the $Si^{4+}$ ions from the substrate are diffused to the sealing glass. From these results, we could understand the mechanism of strengthening of the adhesion of soda lime silica substrate by ion-diffusion from the substrate to the glass.