• Title/Summary/Keyword: Hot Die Forging

Search Result 145, Processing Time 0.026 seconds

A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw (대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구)

  • 김영득;김동영;김동권;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

Hot Forging Design for a Large Scale Compressor Wheel (대형 압축기 휠의 열간단조 공정설계)

  • 임정숙;염종택;김현규;박노광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

A Study on Development of Hot Forged Component of Hot Tool Steel DH32 (열간공구강 DH32 소재의 열간단조품 개발에 관한 연구)

  • Jang, Jin-Hyung;Kim, Hyun-Su;Kim, Jong-Hyeon;Kim, Hyun-Pil;Kim, Young-Jo
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • Hot tool steel, in general, has not been used as a material in hot forging. However such a hot tool steel is recently applied to forging materials by recent forging technology. DH32 is known as a kind of hot tool steels, which is developed for characteristics of excellent strength and toughness in high temperature. Feasibility of DH32 to hot forging material has been researched to develop the hot forging technology of a plunger used for a large-sized marine fuel pump. Hot compression experimental works were performed to investigate the hot strain characteristic of DH32 and with the experimental results FE simulations were also conducted for the design of forging processes and preform. It is found out through the hot compression experimental works that DH32 has a hot brittleness at more than $1150^{\circ}C$.

  • PDF

Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine (선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계)

  • Hwang, B.C.;Lee, W.H.;Bae, W.B.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

Hot Forging Design of Titanium Compressor Wheel for a Marine Turbocharger (선박용 과급기 타이타늄합금 압축기휠의 열간단조 공정설계)

  • Yeom, J.T.;Na, Y.S.;Lim, J.S.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.354-360
    • /
    • 2009
  • Hot-forging process and die design were made for a large-scale compressor wheel of Ti-6Al-4V alloy by using the results of 2-D FEM simulation. The design integrated the geometry-controlled approach and the processing contour map based on the dynamic materials model and the flow stability criteria. In order to obtain the processing contour map of Ti-6Al-4V alloy, compression tests were carried out in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-1}$ to $10s^{-1}$. In the die design of the compressor wheel using the rigid-plastic FEM simulation, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk (초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가)

  • Cha, D.J.;Kim, D.K.;Kim, Y.D.;Bae, W.B.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of Die Steels (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • Jeong H. S.;Cho J. R.;Cha D. J.;Bae Y. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.131-135
    • /
    • 2001
  • Evaluation of microstructural changes during open die forging of heavy ingots is important for process control. The objective of the control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects md to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent processes of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF