• 제목/요약/키워드: Hot Cell Facility

검색결과 50건 처리시간 0.023초

HOT CELL RENOVATION IN THE SPENT FUEL CONDITIONING PROCESS FACILITY AT THE KOREA ATOMIC ENERGY RESEARCH INSTITUTE

  • YU, SEUNG NAM;LEE, JONG KWANG;PARK, BYUNG SUK;CHO, ILJE;KIM, KIHO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.776-790
    • /
    • 2015
  • Background: The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. Method: For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

사용후핵연료 차세대관리 종합공정 실증시설 (Hot Cell Facility for Demonstration of Advanced Spent Fuel Conditioning Process)

  • 정원명;구정회;조일제;국동학;이은표;백상열;이규일;유길성;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.331-336
    • /
    • 2003
  • 국내 경수로형 사용후핵연료의 효율적인 관리를 위하여 현재 건식처리공정으로 개발 중에 있는 차세대관리 종합공정의 실증시험이 계획되어 있다. 실증시험의 수행을 위해서는 기밀성이 유지되는 ${\alpha}{\gamma}$ type 핫셀시설과 시설의 안전성 확보가 필수적이다. 핫셀시설 확보에 필요한 재원을 최소화하기 위하여 기존 ${\beta}{\gamma}$ type 핫셀을 개조하여 활용하기로 하였으며, 차세대관리 종합공정의 특성을 고려하여 실증시설의 보수적 안전성 확보와 핫셀 내 효율적인 공정운전을 위한 분야별 설계요건을 확립하였다. 또한 이를 기준으로 실증공정의 공정조건과 상세한 작업흐름을 분석하여 핫셀 및 부대설비와 공정기기들의 구성과 배치론 최적화하였으며, 실증공정 및 핫셀 개조를 위한 기본 설계와 상세설계, 안전성분석과 환경영향평가를 완료하였다.

  • PDF

조사연료봉 봉단마개의 레이저용접기술 (Technology of the End Cap Laser Welding for Irradiation Fuel Rods)

  • 김수성;이정원;고진현;이영호
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.20-25
    • /
    • 2003
  • Various welding methods such as Gas Tungsten Arc Welding(GTAW), magnetic force electrical resistance welding and Laser Beam Welding(LBW) are now available for end cap closure of nuclear fuel rods. Even though the resistance and GTA welding processes are widely used in manufacturing commercial fuel rods, they can not be recommended for the remote seal welding of fuel rods in the hot cell Facility due to the complexity of the electrode alignment, the difficulty in replacing parts in a remote manner and the large heat input for the thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for the end cap welding of irradiation fuel rods in the hot cell. The remote laser welding apparatus in the hot cell Facility was developed using a pulsed Nd:YAG laser of 500 watt average power with an optical fiber transmission. The weldment quality such as microstructure and mechanical strength was satisfactory. The optimum conditions of laser welding for encapsulating irradiation fuel rods in the hot cell were obtained.

DESIGN AND CONSTRUCTION OF AN ADVANCED SPENT FUEL CONDITIONING PROCESS FACILITY (ACPF)

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Kwon, Kie-Chan;Lee, Eun-Pyo;Lee, Won-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.859-866
    • /
    • 2009
  • KAERI has worked on the development of an advanced spent fuel conditioning process (ACP) since 1997. A hot cell facility, termed the ACPF, has also been developed. The ACPF consists of two air-sealed hot cells. The results of a safety analysis as part of the license procurement process stipulated by the Korean Government showed that the facility was designed safely. After its construction, an integrated performance test was performed. The results of this test confirmed that the facility satisfies the design requirements.

Design considerations for teleoperation systems operating in gas-tight argon cells

  • Yu, Seungnam;Lee, Jongkwang;Park, Byungsuk;Cho, Ilje;Lee, Hyojik
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1717-1726
    • /
    • 2017
  • In the nuclear industry, mechanical engineers spend a significant portion of their time designing equipment such as manipulators, bogies, mechanical grippers, and so on. Some customized designs can be considered as standard mechanical equipment in this area, although it is not unusual to find that an existing design cannot simply be copied from one project to another. Varied performance requirements can dictate that redesign, often quite extensive redesign, is required. However, if something similar has been done before, engineers could use that as a starting point for the new project. In this regard, this study presents several guidelines inspired by previous design knowledge for similar development cases. Moreover, this study presents more detailed suggestions such as design guidelines for an argon-based hot cell atmosphere and design experience for a large-scale practical hot cell facility. Design considerations and case studies dealt with in this study are dedicated to teleoperation manipulators that are used at a large-scale argon cell facility for pyroprocess integrated inactive demonstration (PRIDE), at the Korea Atomic Energy Research Institute. In particular, for case studies to support the suggested recommendations, a fabricated telemanipulator system for PRIDE is introduced, and several kinds of experimental results associated with it are presented.

Development of classification criteria for non-reactor nuclear facilities in Korea

  • Dong-Jin Kim;Byung-Sik Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.792-799
    • /
    • 2023
  • Non-reactor nuclear facilities are increasing remarkably in Korea combined with advanced technologies such as life and space engineering, and the diversification of the nuclear industry. However, the absence of a basic classification guideline related to the design of non-reactor nuclear facilities has created confusion whenever related projects are carried out. In this paper, related domestic and international technical guidelines are reviewed to present the classification criteria of non-reactor nuclear facilities in Korea. Based on these criteria, the classification of structures, systems and components (SSCs) for safety controls is presented. Using the presented classification criteria, classification of a hot cell facility, a representative non-reactor nuclear facility, was performed. As a result of the classification, the hot cell facility is classified as the hazard category 3, accordingly, the safety class was classified as non-nuclear safety, the seismic category as non-seismic (RW-IIb), and the quality class as manufacturers' standards (S).

핫셀시설의 방사선 안전성 평가 (Evaluation on the Radiological Shielding Design of a Hot Cell Facility)

  • 조일제;국동학;구정회;정원명;유길성;이은표;박성원
    • 방사성폐기물학회지
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2004
  • 한국원자력연구소에서는 고온의 용융염 매질 하에서 사용 후 핵연료를 환원시키는 차세대관리종합공정 연구를 수행 중에 있다. 추후 본 기술개발을 실증시험 하기 위해서는 방사선 차폐능이 확보된 핫셀이 필수적이며, 핫셀은 최대 1,385TBq의 방사능량에 대한 차폐 안전성을 가져야 한다. 최대 방사선원에 대한 핫셀의 차폐능을 확보하기 위하여, 본 연구에서는 실증시험 시 사용후핵연료부터 발생하는 중성자 및 감마선에 의한 선량률이 법적 허용선량치보다 낮게 유지되도록 핫셀의 차폐 설계에 대한 안전성을 평가하였다. QAD-CGGP 및 MCNP-4C 코드를 이용하여 핫셀 차폐체의 설계치에 대한 차폐 계산을 수행하였다. 작업구역에 대한 감마선 차폐계산 결과 QAD-CGGP 코드는 2.10${\times}$$10^{-3}$, 2.97${\times}$$10^{-3}$ mSv/h, MCNP-4C 코드는 1.60${\times}$$10^{-3}$, 2.99${\times}$$10^{-3}$ mSv/h 이었으며, 서비스 구역은 1.01${\times}$$10^{-2}$, 7.88${\times}$$10^{-2}$ mSv/h 로 평가되었다. 그리고 MCNP-4C코드를 이용하여 중성자에 의한 선량률을 계산한 결과, 중성자에 의한 선량률은 감마에 의한 선량률의 약 20% 이하치를 나타내었다. 따라서 선량률 대부분은 감마선에 의한 영향임을 알 수 있었다. 본 연구를 통하여 핫셀의 차폐 설계치가 작업구역의 선량 제한치 0.01 mSv/h 와 서비스 구역에서의 선량 제한치 0.15 mSv/h를 만족시키는 것을 확인할 수 있었다.

  • PDF

핫셀의 일반 콘크리트 보강을 위한 방사선 차폐해석 연구 (A Study on the Radiation Shielding Analysis for Reinforcing the Hot Cell Regular Concrete Shield Wall)

  • 조일제;황용화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.985-990
    • /
    • 2003
  • In order to demonstrate Advanced Spent Fuel Conditioning Process (ACP), shielding facilities such as hot cell suitable to handling radionuclides and process property will be necessary. But the construction of new facilities needs much money, man-power and time, it is now scheduled to remodel the hot cell, which has already been installed and maintained at Irradiated Material Experiment Facility (IMEF) in the Korea Atomic Energy Research Institute (KAERI). The basic structure and concrete shield wall of hot cell partly have been constructed on the base floor in IMEF building in current status. And hot cell after remodeling will be used for carrying out the lab-scale experiment of ACP. The hot cell was built in accordance with 35 curies of fe-59(1.2 MeV) as design criteria of radiation dose limit. But the radioactive source of ACP is expected to be much higher than design criteria of IMEF, shielding ability of the hot cell in the current status is unsatisfactory to the hot test of ACP. Therefore shield wall shall be reinforced with heavy concrete, steel or lead. In this paper, dose rates are calculated according to ACP source, shielding materials, etc., and reinforcement structures are determined considering the current situation of hot cells, installation of shield windows and the easiness of work.

  • PDF

SHIELDING PERFORMANCE OF A NEWLY DESIGNED TRANSPORT CASK IN THE ADVANCED CONDITIONING SPENT FUEL PYROPROCESS FACILITIY

  • Park, Chang-Je;Jeong, Chang-Joon;Min, Deok-Ki;Kang, Hee-Young;Choi, Woo-Seok;Lee, Joo-Chan;Bang, Gyeoung-Sik;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.319-326
    • /
    • 2008
  • To transport process wastes efficiently from the Advanced Spent Fuel Conditioning Pyro-process Facility (ACPF) at the Korea Atomic Energy Research Institute (KAERI), a new hot cell cask has been designed based on an existing hot cell padirac transport cask, with not only a neutron absorber for improved shielding capability, but also a docking facility for an easy docking system. In the new hot cell cask, two kinds of materials have been considered as shielding materials, polyethylene and resin. To verify the transport compatibility of the waste and spent fuel for the ACPF, neutron and photon shielding calculations were performed using the MCNPX code. The source term was evaluated by the ORIGEN-ARP code system based on spent PWR fuel. From the calculation, it was found that the maximum surface dose rates of the hot cell cask with the two candidates were estimated within the limit (2 mSv/hr).