• Title/Summary/Keyword: Hot Air Temperature Control

Search Result 168, Processing Time 0.028 seconds

Optimization of drying conditions of Cudrania tricuspidata using response surface methodology (반응표면분석법을 이용한 꾸지뽕의 블랜칭 처리 및 건조 조건 최적화)

  • Park, Jong-Jin;Park, Dae-Hee;Jung, Gayoung;Shin, Eunju;Do, Seon-Gil;Lee, Wonyoung
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.74-83
    • /
    • 2017
  • This study was conducted to obtain the optimal conditions of hot air drying for Cudrania tricuspidata by response surface methodology (RSM). The independent variables were blanching time (60, 120, 240 sec), drying temperature (40, 60, $80^{\circ}C$) and drying time (12, 24, 36 h). The dependant variables were total polyphenol content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity (DPPH), and color difference (${\Delta}E$). Viable cell colony was counted according to changes of blanching time. It was confirmed that microorganisms gradually decreased with increasing blanching time. From RSM results, the predicted values of TPC, TFC, DPPH, and ${\Delta}E$ were 8.62 mg GAE/g, 56.65 mg RE/g, 40.26% and 11.69, respectively. Experimental values within the optimal range (240 sec, blanching time; $60^{\circ}C$, drying temperature; 24 h, drying time) were 10.06 mg GAE/g, 49 mg RE/g, 44.99% and 10.53, respectively. The predicted values were similar to the experimental values. Comparing drying tendency according to changes of blanching time, moisture reduction was bigger in the blanched sample than that in control at $40^{\circ}C$. However, the differences between blanched and control decreased with increase of drying temperature. Viable cell gradually decreased as increasing blanching time.

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

A Study on Real-Time Monitoring for Moisture Measurement of Organic Samples inside a Drying Oven using Arduino Based on Open-Source (오픈 소스 기반의 아두이노를 이용한 건조기 내 유기 시료의 실시간 수분측정 모니터링에 관한 연구)

  • Kim, Jeong-hun
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.85-99
    • /
    • 2022
  • Dryers becoming commercially available for experimental and industrial use are classified to general drying oven, hot-air dryer, vacuum dryer, freezing dryer, etc. and kinds of them are various from the function, size and volume, etc. But the moisture measurement is not applied although it is important factor for the quality control and the performance improvement of products, and then now is very passive because the weight is weighed arbitrarily after dry-end. Generally the method for measuring moisture is divided by a direct measurement method and a indirect measurement method, and the former such as the change of weight or volume on the front and rear of separation of moisture, etc. is mainly used. Relatively a indirect measurement is very limited to apply due to utilize measurement apparatuses using temperature conductivity and micro-wave etc. In this research, we easily designed the moisture measurement system using the open-source based Arduino, and monitored moisture fluctuations and weight profiles in the real-time without the effect of external environment. Concretely the temperature-humidity and load cell sensors were packaged into a drying oven and the various change values were measured, and their sensors capable to operate 60℃ and 80℃ were selected to suitable for the moisture sensitive materials and the food dry. And also the performance safety using the organic samples of banana, pear, sawdust could be secured because the changes of evaporation rate as the dry time and temperature, and the measurement values of load cell appeared stable response characteristics through repeated experiments. Hereafter we judge that the reliability can be improved increasingly through the expansion of temperature-humidity range and the comparative analysis with CFD(Computational Fluid Dynamics) program.

Field Survey on Smart Greenhouse (스마트 온실의 현장조사 분석)

  • Lee, Jong Goo;Jeong, Young Kyun;Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • This study set out to conduct a field survey with smart greenhouse-based farms in seven types to figure out the actual state of smart greenhouses distributed across the nation before selecting a system to implement an optimal greenhouse environment and doing a research on higher productivity based on data related to crop growth, development, and environment. The findings show that the farms were close to an intelligent or advanced smart farm, given the main purposes of leading cases across the smart farm types found in the field. As for the age of farmers, those who were in their forties and sixties accounted for the biggest percentage, but those who were in their fifties or younger ran 21 farms that accounted for approximately 70.0%. The biggest number of farmers had a cultivation career of ten years or less. As for the greenhouse type, the 1-2W type accounted for 50.0%, and the multispan type accounted for 80.0% at 24 farms. As for crops they cultivated, only three farms cultivated flowers with the remaining farms growing only fruit vegetables, of which the tomato and paprika accounted for approximately 63.6%. As for control systems, approximately 77.4% (24 farms) used a domestic control system. As for the control method of a control system, three farms regulated temperature and humidity only with a control panel with the remaining farms adopting a digital control method to combine a panel with a computer. There were total nine environmental factors to measure and control including temperature. While all the surveyed farms measured temperature, the number of farms installing a ventilation or air flow fan or measuring the concentration of carbon dioxide was relatively small. As for a heating system, 46.7% of the farms used an electric boiler. In addition, hot water boilers, heat pumps, and lamp oil boilers were used. As for investment into a control system, there was a difference in the investment scale among the farms from 10 million won to 100 million won. As for difficulties with greenhouse management, the farmers complained about difficulties with using a smart phone and digital control system due to their old age and the utter absence of education and materials about smart greenhouse management. Those difficulties were followed by high fees paid to a consultant and system malfunction in the order.

Effect of polymerization temperature on the mechanical properties of provisional prosthesis resins (중합 온도가 임시 보철용 수지의 기계적 성질에 미치는 영향)

  • Hong, Min-Ho;Ha, Jung-Yun;Kwon, Tae-Yub
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.311-318
    • /
    • 2017
  • The purpose of this study was to examine the effects of the curing sequence and polymerization temperature on the flexural strength and microhardness of two provisional resins (Bis-acryl resin composite and polymethyl methacrylate (PMMA)). Polymerization was carried out under various conditions, in air at $25^{\circ}C$ (control) and in hot water (40, 50, 60, 70, and $80^{\circ}C$). The flexural strength test was conducted according to ISO-4049. The Knoop hardness was measured. For the Bis-acryl resin, the temperature up to $50^{\circ}C$ did not increase the flexural strength nor the hardness of the bis-acryl resin composite (p>0.05) but higher temperatures increased the strengths. For the PMMA resin, flexural strength increased with temperatures up to $70^{\circ}C$ and then decreased slightly. Bis-acryl resin composite had higher mechanical properties than the PMMA resin. The effect of heat was more pronounced in the bis-acryl resin composite than in the PMMA resin (p<0.05).

Development of a New Commercial Grain Cooler (곡물냉각기의 개발)

  • 김동철;김의웅;금동혁;한종규
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.250-256
    • /
    • 2004
  • The objectives of this study were to develop a new commercial grain cooler suited to domestic weather and post-harvesting conditions for paddy, and to evaluate the performance. A prototype grain cooler capable of cooling paddy of 200 tons within 24 hours was developed. The grain cooler was designed to control the refrigeration capacity from 0 to 100% by controlling the capacity of compressor with unloading solenoid valve and by changing the flow rates of hot refrigerant gas flowing into reheater and evaporator from compressor. And a controller with one chip microprocessor was developed to control temperature and relative humidity of cooling air. The maximum cooling capacity of the grain cooler was 35,284㎉/hr at condensing/evaporating pressure of 16.5/3.6 kgf/$\textrm{cm}^2$. Maximum flow rate of cooling air was 120 ㎥/min at static pressure of 279 mmAq. The total maximum required power was 22.8㎾, and total required energy was saved from 26.7 to 33.3% of maximum power depending on operating conditions. The coefficient of performance of refrigeration devices and total coefficient of performance of the grain cooler were 4.71 and 1.8, respectively.

A study on the color controlled of painter's work (페인트 도장공사의 색관리에 관한 연구)

  • Shim, Myung-Sup;Lee, Hyun-Jeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.107-114
    • /
    • 2003
  • This study aims to find methods that prevents aging of buildings paint coating and that limits defects in construction. Defects in painting can occur in four stages: pure paint, during painting, after the paint coating has dried, and after some period of time has passed after coating. Paint may become bad due to precipitation of pigments, formation of membranes, and seeding during manufacturing. Therefore, it is important that the paint is well mixed and kept airtight at a cool, dark place. Indents, paint brush strokes, orange peel, separation of colors, and paint running and spreading during the paint work process can be prevented by using high quality materials and applying a high-level of construction method. After the paint coating has dried, boiling, yellowing, poor drying, poor bonding, and/or glen deficiency may occur. These are influenced by the levels of cleanness of the dried product, drying temperature and hydration. Then, when the coating has been left dried for some period of time, cracking, peeling, scaling, swelling, discoloring, and/or rusting may develop due to the ultraviolet and contaminants in the air. Since these defects occur due to inappropriate construction schedule and/or hot and humid condition, one must use weatherproof materials. Furthermore, poor paint color may be caused by contamination in the sample plate, discoloration, and/or discrepancies in colors which are due to material differences, level of glossiness, degree of dispersion, dual color property of metallic colors, precipitation of pigments, etc. One should achieve reduction in construction cost and effectiveness in paint work by limiting contaminations in the construction site and strictly observing to construction regulations.

A Study on the Processing of Long Fiber-Reinforced Composite Materials for Thermoforming On the Correlation Coefficient between Separation and Orientation (Thermoforming용 長纖維强化 複合材料의 成形工程에 관한 硏究 分離$\cdot$配向의 相關계수)

  • 이동기;김정락;김상필;이우일;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1106-1114
    • /
    • 1993
  • A composite material is composed of a reinforcement and a matrix, which determine mechanical characteristics of the molded part. There is no doubt that the properties of a composite material depend not only on the characteristics of the matrix but also on the structure of glass fiber mat and a fiber type of reinforcement. Therefore it is very important to study the composites of reinforcement and the matrix, and to control the fiber type in the process of molding of composite materials. In this study, the specimen was made of a glass fiber mat of 6-7mm thickness by scattering it in the air after cutting the glass fiber mat with needle punching makes change according to the type of needle and the number of times of stretching. First the sheet was made by means of a hot-press after accumulating a matrix and a glass fiber according to each mat structure of glass fiber. It was heated the manufactured sheet with the dry oven and molded it a secondary high temperature compression by a 30 ton oilhydraulic press. A definition of a correlation coefficient is showed up during this period and find it out with the relation of the fiber-matrix separation and the fiber orientation. We studied effects of the glass fiber mat structures on the correlation coefficient.

Actual Utilization and Thermal Environment of Greenhouses According to Several Cooling Methods during Summer Season (하절기 온실의 활용실태 및 몇 가지 고온극복 방법별 열환경 분석)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This study was performed to find an efficient method to overcome extremely high temperature in greenhouses during summer season. The actual utilization of greenhouses during hot summer season showed that about 21.6% of the investigated greenhouse farms were in fallow state, and most of greenhouse farms were cultivated under the very inferior environment. Thermal environment of greenhouses according to the evaporative cooling method and several assistant cooling methods such as ventilation, shading screen, roof sprinkling were examined. As the each assistant cooling method was used, about 74.8%, 25.9%, and 58.2% of temperatures measured at intervals of ten minutes between ten and seventeen o'clock were above 35$^{\circ}C$. When shading screen and evaporative cooling system were operated, most greenhouse air temperatures were maintained below 35$^{\circ}C$, and showed a drop of 3.8~4.2$^{\circ}C$ as compared with naturally ventilated greenhouse.

  • PDF

Comparison of Growth and Yield Characteristics for the Desert Climate Adaptability of European Long- and Medium-sized Cucumber Varieties (유럽계 장과형과 중과형 오이 품종의 사막기후 적응성 검증을 위한 생육 및 수량 특성 비교)

  • Yoon, Seoa;Kim, Jeongman;Choi, Eunyoung;Choi, Kiyoung;Choi, Kyunglee;Nam, Kijeong;Oh, Seokkwi;Bae, Jonghyang;Lee, Yongbeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.125-132
    • /
    • 2022
  • This study aimed to examine cucumber (Cucumis sativus) varieties adaptive to the desert climate by comparing and analyzing the growth, yield, and water consumption. Two long-sized cucumber varieties, 'Gulfstream' and 'Imea' and two medium-sized cucumbers, 'Nagene' and 'Sausan' were cultivated in coir substrate hydroponics under hot and humid greenhouse conditions from March 2 to June 20, 2020. On the 113 DAT, 'Nagene' had the longest plant height and the highest internode number. The marketable fruit number per plant was higher in the medium-sized varieties, which had more internode number. The marketable fruit number was 31.3 for 'Gulfstream', 30.7 for 'Imea', 57.8 for 'Nagene', or 56.0 for 'Sausan' with no significant difference in total fruit weights per plant. The water consumption required to produce 200 g of fruit was lower in the 'Nagene' (2.39 L) with the highest water use efficiency (WUE). Therefore, 'Nagene' variety may have higher adaptability to desert high temperature compared to the long-sized varieties, and it is going to be necessary to verify more medium-sized cucumber varieties.