• Title/Summary/Keyword: Host adaptation

Search Result 64, Processing Time 0.029 seconds

Enabling Performance Intelligence for Application Adaptation in the Future Internet

  • Calyam, Prasad;Sridharan, Munkundan;Xu, Yingxiao;Zhu, Kunpeng;Berryman, Alex;Patali, Rohit;Venkataraman, Aishwarya
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.591-601
    • /
    • 2011
  • Today's Internet which provides communication channels with best-effort end-to-end performance is rapidly evolving into an autonomic global computing platform. Achieving autonomicity in the Future Internet will require a performance architecture that (a) allows users to request and own 'slices' of geographically-distributed host and network resources, (b) measures and monitors end-to-end host and network status, (c) enables analysis of the measurements within expert systems, and (d) provides performance intelligence in a timely manner for application adaptations to improve performance and scalability. We describe the requirements and design of one such "Future Internet performance architecture" (FIPA), and present our reference implementation of FIPA called 'OnTimeMeasure.' OnTimeMeasure comprises of several measurement-related services that can interact with each other and with existing measurement frameworks to enable performance intelligence. We also explain our OnTimeMeasure deployment in the global environment for network innovations (GENI) infrastructure collaborative research initiative to build a sliceable Future Internet. Further, we present an applicationad-aptation case study in GENI that uses OnTimeMeasure-enabled performance intelligence in the context of dynamic resource allocation within thin-client based virtual desktop clouds. We show how a virtual desktop cloud provider in the Future Internet can use the performance intelligence to increase cloud scalability, while simultaneously delivering satisfactory user quality-of-experience.

Functional Implication of the tRNA Genes Encoded in the Chlorella Virus PBCV-l Genome

  • Lee, Da-Young;Graves, Michael V.;Van Etten, James L.;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.334-342
    • /
    • 2005
  • The prototype Chlorella virus PBCV-l encodes 11 tRNA genes and over 350 protein-encoding genes in its 330 kbp genome. Initial attempts to overexpress the recombinant A189/192R protein, a putative virus attachment protein, in E. coli strain BL21(DE3) SI were unsuccessful, and multiple protein bands were detected on Western blots. However, the full-length A189/192R recombinant protein or fragments derived from it were detected when they were expressed in E. coli BL21 CodonPlus (DE3) RIL, which contains extra tRNAs. Codon usage analysis of the a189/192r gene showed highly biased usage of the AGA and AVA codons compared to genes encoded by E. coli and Chlorella. In addition, there were biases of XXA/U($56\%$) and XXG/ C($44\%$) in the codons recognized by the viral tRNAs, which correspond to the codon usage bias in the PBCV-1 genome of XXA/U ($63\%$) over those ending in XXC/G ($37\%$). Analysis of the codon usage in the major capsid protein and DNA polymerase showed preferential usage of codons that can be recognized by the viral tRNAs. The Asn (AAC) and Lys (AAG) codons whose corresponding tRNA genes are duplicated in the tRNA gene cluster were the most abundant (i.e., preferred) codons in these two proteins. The tRNA genes encoded in the PBCV-l genome seem to play a very important role during the synthesis of viral proteins through supplementing the tRNAs that are frequently used in viral proteins, but are rare in the host cells. In addition, these tRNAs would help the virus to adapt to a wide range of hosts by providing tRNAs that are rare in the host cells.

Development of Real-time PCR Assay Based on Hydrolysis Probe for Detection of Epichloë spp. and Toxic Alkaloid Synthesis Genes

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Rahman, Md Atikur;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.201-207
    • /
    • 2022
  • Fescues, which are widely cultivated as grasses and forages around the world, are often naturally infected with the endophyte, Epichloë. This fungus, transmitted through seeds, imparts resistance to drying and herbivorous insects in its host without causing any external damage, thereby contributing to the adaptation of the host to the environment and maintaining a symbiosis. However, some endophytes, such as E. coenophialum synthesize ergovaline or lolitrem B, which accumulate in the plant and impart anti-mammalian properties. For example, when livestock consume excessive amounts of grass containing toxic endophytes, problems associated with neuromuscular abnormalities, such as convulsions, paralysis, high fever, decreased milk production, reproductive disorders, and even death, can occur. Therefore, pre-inoculation with non-toxic endogenous fungi or management with endophyte-free grass is important in preventing damage to livestock and producing high-quality forage. To date, the diagnosis of endophytes has been mainly performed by observation under a microscope following staining, or by performing an immune blot assay using a monoclonal antibody. Recently, the polymerase chain reaction (PCR)-based molecular diagnostic method is gaining importance in the fields of agriculture, livestock, and healthcare given the method's advantages. These include faster results, with greater accuracy and sensitivity than those obtained using conventional diagnostic methods. For the diagnosis of endophytes, the nested PCR method is the only available option developed; however, it is limited by the fact that the level of toxic alkaloid synthesis cannot be estimated. Therefore, in this study, we aimed to develop a triplex real-time PCR diagnostic method that can determine the presence or absence of endophyte infection using DNA extracted from seeds within 1 h, while simultaneously detecting easD and LtmC genes, which are related to toxic alkaloid synthesis. This new method was then also applied to real field samples.

Characterization of the bacteriophage P4 sid+ derivative overcoming P2sir-associated helper inefficiency through DNA conformational adaptation (DNA 형태 적응을 거쳐 P2sir-관련 도움파지 비효율성을 극복하는 박테리오파지 P4 sid+ 유도체 정성 연구)

  • Kim, Kyoung-Jin
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.120-124
    • /
    • 2016
  • A certain size of DNA (28-29 kb long) to be packaged into P2-size head and the mutation in sid gene of bacteriophage P4 are the major factors to overcome "P2 sir-associated helper inefficiency". To clarify whether the presence of sid mutation is essential to overcome "P2 sir-associated helper inefficiency" or not, we tested the P4 derivative, P4 delRI::kmr, which is $sid^+$ and whose genome size supposed to be 28.5 kb long in the case of being packaged into $P2_{sir3}$-sized large head. As P4 delRI::kmr showed the low EOP with P2 sir3 lysogen, P4 delRI::kmr phage stock was prepared in P2 sir3 lysogen host to increase the EOP with P2 sir3 lysogen. Through this process, P4 delRI::kmr had been adapted for P2 sir3 lysogen. With a CsCl buoyant equilibrium density gradient experiment and gel electrophoresis of the isolated DNA, it was evident that the adaptation of P4 delRI::kmr for P2 sir3 lysogen was caused by the conformational change of DNA to be packaged into large head. The burst size determination experiments with P4 delRI::kmr phage stock adapted for P2 sir3 lysogen and normal P4 delRI::kmr phage stock showed that not the sid mutation but the size of DNA to be packaged (28-29 kb long) was essential to overcome "P2 sir-associated helper inefficiency".

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

The Effect of Protein Expression of Streptococcus pneumoniae by Blood

  • Bae, Song-Mee;Yeon, Sun-Mi;Kim, Tong-Soo;Lee, Kwang-Jun
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.703-708
    • /
    • 2006
  • During infection, the common respiratory tract pathogen Streptococcus pneumoniae encounters several environmental conditions, such as upper respiratory tract, lung tissue, and blood stream, etc. In this study, we examined the effects of blood on S. pneumoniae protein expression using a combination of highly sensitive 2-dimensional electrophoresis (DE) and MALDI-TOF MS and/or LC/ESI-MS/MS. A comparison of expression profiles between the growth in THY medium and THY supplemented with blood allowed us to identify 7 spots, which increased or decreased two times or more compared with the control group: tyrosyl-tRNA synthetase, lactate oxidase, glutamyl-aminopeptidase, L-lactate dehydrogenase, cysteine synthase, ribose-phosphate pyrophosphokinase, and orotate phosphoribosyltransferase. This global approach can provide a better understanding of S. pneumoniae adaptation to its human host and a clue for its pathogenicity.

Characterization and Expression in Escherichi coli of Streptococcus pneumoniae FtsH

  • Kim, Hee-Soo;Lee, Jae-Jung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.109-115
    • /
    • 2000
  • FtsH is a membrane-bound, ATP-dependent metalloprotease that is involved in a variety of cellular functions including the regulation of responses to heat and stress shock. Previously, we had cloned and sequenced pneumococcal ftsH gene whose deduced amino acid sequence was very similar to those of several gram-positive bacteria and Escherichia coli, except for the N-terminal domain that was responsible for membrane anchoring. In order to better understand the role of Streptococcus pneumoniae FtsH, we expressed pneumococcal ftsH gene in Escherichia coli. When it was expressed from a strong promoter, $P_{tac}$, a considerable amount of the recombinant FtsH was produced, although the prolonged induction resulted in not only accumulation of breakdown products but also ceasing of the further growth of E. coli host. This indicated that the expression of the exogenous ftsH gene was tightly regulated since the excessive FtsH appeared detrimental to bacterial cells. In Western blotting, the pneumococcal FtsH protein, whether native or recombinant, was reactive to anti-E. coli FtsH serum. The observation that FtsH proteins were well conserved throughout the bacterial kingdom and its expression level was fine-tuned suggests an important role for this protein in the stress adaptation which may be related to infecting process by pneumococci.

  • PDF

Simple Sequence Repeat (SSR)-Based Gene Diversity in Burkholderia pseudomallei and Burkholderia mallei

  • Song, Han;Hwang, Junghyun;Myung, Jaehee;Seo, Hyoseok;Yi, Hyojeong;Sim, Hee-Sun;Kim, Bong-Su;Nierman, William C.;Kim, Heenam Stanley
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.237-241
    • /
    • 2009
  • Pathogens Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) contain a large number (> 12,000) of Simple Sequence Repeats (SSRs). To study the extent to which these features have contributed to the diversification of genes, we have conducted comparative studies with nineteen genomes of these bacteria. We found 210 genes with characteristic types of SSR variations. SSRs with nonamer repeat units were the most abundant, followed by hexamers and trimers. Amino acids with smaller and nonpolar R-groups are preferred to be encoded by the variant SSRs, perhaps due to their minimal impacts to protein functionality. A majority of these genes appears to code for surface or secreted proteins that may directly interact with the host factors during pathogenesis or other environmental factors. There also are others that encode diverse functions in the cytoplasm, and this protein variability may reflect an extensive involvement of phase variation in survival and adaptation of these pathogens.

Characterization of Heterodera sojae Virulence Phenotypes in Korea

  • Kang, Heonil;Ko, Hyoungrai;Park, Byeongyong;Choi, Insoo
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.366-371
    • /
    • 2022
  • The white soybean cyst nematode Heterodera sojae, isolated from the roots of soybean in Korea, is widespread in most provinces of the country and has the potential to be as harmful to soybean as H. glycines. Determining the virulence phenotypes of H. sojae is essential to devising management strategies that use resistant cultivars. Consequently, virulence phenotypes of 15 H. sojae populations from Korea were determined on seven soybean lines and one susceptible check variety. Two different HS types were found to be present in Korea; the more common HS type 2.5.7, comprising 73.3% of the H. sojae populations and the less common HS type 0, constituting only 26.7% of the tested populations. Considering the high frequency of H. sojae adaptation to soybean indicator lines, the PI 88788 group may not be a possible source of resistance while PI 548402, PI 90763, PI 437654, and PI 89772 can be used as resistance sources for soybean breeding programs aimed at developing H. sojae-resistant soybean cultivars in Korea.

Endobiotic microalgae in molluscan life

  • Sokolnikova, Yulia
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.10
    • /
    • pp.499-516
    • /
    • 2022
  • Endobiotic microalgae inhabit various groups of organisms, including bivalves. In this group, the association between the giant molluscs Tridacna and Symbiodinium is one of the most recognizable. This consortium allows hydrobionts to survive in oligotrophic waters by regulating their metabolism. The available research has provided an understanding of the interaction and adaptation of these symbionts, but the problem of the beginning of the formation of these relationships remains unresolved. In the case of Tridacninae, symbiosis is essential for the survival of bivalves, in contrast to representatives of the Mytilidae and the Coccomyxa found in them. A few works devoted mainly to the morphological aspects of invasion have shown that endobiont causes inflammation and pathology. Having data to clarify the exact "diagnosis" of the interaction of these organisms is not enough. It is possible that the relationship between bivalves and Coccomyxa is in the early stages of being established, which may lead to mutualism or parasitism in the future. We assume that the analysis of works on the symbiosis of Symbiodinium and bivalves will facilitate the course of research for the less studied Coccomyxa and their hosts. By postulating the Coccomyxa represent a unique evolutionary model for the formation of a symbiotic system, it is possible to use this system to study the interaction of organisms during their initial contact. The identified signalling pathways and mechanisms that allow the photobionts to evade host immunity can be useful for constructing new forms of symbiosystems.