• Title/Summary/Keyword: Host, Dopant

Search Result 82, Processing Time 0.084 seconds

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

Preparation of Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission Layer (PVK:Ir(ppy)$_3$ 발광층을 가지는 고분자 발광다이오드의 제작)

  • Lee, Hak-Min;Gong, Su-Cheol;Choi, Jin-Eun;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.201-203
    • /
    • 2008
  • ITO 투명전극을 양극으로 사용하고 PEDOT:PSS 고분자 물질위에 PVK와 Ir(ppy)3를 각각 host와 dopant로 사용하여 고분자 발광다이오드를 제작하였다. 전자 수송층의 역할로 TPBI, 음극으로 Al을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)3/TPBI/LiF/Al 구조를 갖는 녹색 인광 고분자 유기발광소자(PhPLED)를 제작하였다. 제작 된 소자의 발광부 dopant인 Ir(ppy)3도핑 농도에 따른 전기적 광학적 특성을 평가하였다. PVK:Ir(ppy)3를 host와 dopant system으로 dopant Ir(ppy)3의 도핑 양을 0.5 wt%에서2.5 wt%까지 씩 변화시키면서 최적의 농도를 찾고자 하였다. TPBI를 전자 수송층으로 사용 하였을 경우 최대 휘도는 약 8600 cd/$m^2$ (at 8V)이고, 전류밀도는 337mA/$cm^2$ 를 나타내었다.

  • PDF

Highly Efficient Red Phosphorescent OLEDs Employing a Multifunctional Oligofluorene Host

  • Tsai, Ming-Han;Su, Hai-Ching;Wu, Chung-Chih;Wong, Ken-Tsung;Li, Wen-Ren
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.663-666
    • /
    • 2007
  • High-efficiency red phosphorescent OLEDs employing a novel red emitter and a multifunctional oligofluorene host are reported. With qazIr(acac) as the red phosphorescent dopant, a maximum external quantum efficiency of 19% and maximum power efficiency of 11 lm/W are achieved. In addition, single layer devices using such host and dopant materials have efficiencies up to 13%.

  • PDF

발광층에 Dotted-Line Doping Structure(DLDS)를 적용한 Red-Oranic Light-Emitting Diodes(OLEDs)의 발광특성

  • Lee, Chang-Min;Han, Jeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.177-180
    • /
    • 2004
  • 발광층에 Alq3와 rubrene을 mixed host로 사용하고 DCJTB를 형광 dopant로 사용한 다층 박막 구조의 red OLEDs를 제작하였다. 소자의 구조는 $ITO:Anode(120nm)/{\alpha}-NPD:HTL(40nm)/Alq_3+Rubrene(mixed\;host\;1:1)+DCJTB(red\;dopant\;3%)+:EML(20nm)/Alq_3:ETL(40nm)/MgAg(Mg\;5%\;wt):Cathode(150nm)$ 로서 EML내부에 DCJTB를 Totally Doping Method와 Dotted-Line Doping Method의 두 가지 방법으로 도핑 하였다. Mixed host구조에 DCJTB를 6구간으로 나누어 Dotted Line Doping한 소자는 luminance yield가 $9.2cd/A@10mA/cm^2$ 이었다. 이 소자는 DCJTB만을 Totally Doping한 소자의 luminance yield $3.2cd/A@10mA/cm^2$에 비해 약 190%정도의 높은 효율 향상을 보였다. 또한 $10mA/cm^2$에 도달하는 전압은 5.5V Vs. 8.5V로서 mixed host를 사용한 소자에서 약 3V정도 구동전압이 낮아지는 효과가 있었다. 발광 스펙트럼의 Full Width Half Maximum(FWHM)은 각각 56.6nm와 61nm로서 rubrene을 mixed host로 사용한 소자에서 높은 색 순도를 얻을 수 있었다. 이러한 성능의 향상은 $Alq_3$와 혼합된 rubrene에 의한 낮은 전하주 입장벽, 높은 전류밀도에서 나타나는 발광감쇄현상의 감소, 그리고 발광층의 DLD구조에 의한 전하의 trap & confinement 에 따른 발광 exciton의 형성확률이 증가한데서 나타났다고 생각된다.

  • PDF

Active Matrix OLED Displays with High Stability and Luminous Efficiency by New Doping Method

  • Shibata, Kenichi;Hamada, Yuji;Kanno, Hiroshi;Takahashi, Hisakazu;Mameno, Kazunobu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.4-6
    • /
    • 2003
  • We have developed the active matrix OLED displays with a high efficiency red emission material which uses an emitting assist (EA) dopant system. The EA dopant (rubrene) did not itself emit but assisted the energy transfer from the host ($Alq_s$) to the red emitting dopant(DCM2). A stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in this cell within the luminance range of 100 - 4000 $cd/m^2$ By using EA dopant system, we can realize the reduction of the power consumption of the OLED display..

  • PDF

Red Electrophosphorescence from Poly(BP-alt-BCV) Conjugated Polymer Doped with an Ir-Complex

  • Baek, Jeong-Ju;Jeong, Young-Chul;Han, Yoon-Soo;Jeong, Jeon-Woo;Kwon, Young-Hwan;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.599-601
    • /
    • 2004
  • A new blue electroluminescent conjugated polymer, poly(BP-alt-BCV), was prepared by Hornor-Emmons polycondensation and used as a host polymer for the phosphorescent dopant, $(bsn)_2Ir(acac)$. Poly(N-vinylcarbazole) (PVK), known as a blue EL material, was also used for comparison with poly(BP-alt-BCV). Electrophosphorescence of PLEDs with these dopant/host systems was investigated in terms of luminescence, efficiency, emission color, and energy transfer.

  • PDF

Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology

  • Jeon, Woo-Sik;Park, Tae-Jin;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.87-91
    • /
    • 2009
  • Highly efficient red phosphorescent OLEDs (PHOLEDs) with a simple, organic, triple-layer structure was developed using the narrow-bandgap fluorescent host material bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2) and the deep-red dopant tris(1-phenylisoquinoline)iridium (Ir(piq)3). The maximum current and power efficiency values of 12.71 cd/A and 16.02 lm/W, respectively, with an extremely low doping technology of 1%, are demonstrated herein. The results reveal a practical, cost-saving host dopant system for the fabrication of highly efficient PHOLEDs involving the simple structure presented herein, with a reduction of expensive Ir dopants.

Highly efficient phosphorescent polymer OLEDs fabricated by screen printing

  • Lee, D.H.;Choi, J.S.;Cho, S.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.694-697
    • /
    • 2007
  • We demonstrate the use of screen printing in the fabrication of highly efficient phosphorescent polymer organic-light-emitting devices (OLEDs) based on a green-emitting $Ir(ppy)_3$ and a host polymer PVK. We incorporate PBD in the polymer host as an electron-transporting dopant and ${\alpha}-NPD$ as a hole transporting dopant. The best screen printed single-layer device exhibits very high peak luminous efficiency of 63 cd/A at a relatively high operating voltage of 17.1 V at the luminance of $650\;cd/m^2$. We observed the highest luminance of $21,000\;Cd/m^2$ at 35V. Due to the high operating voltage, despite of the high peak luminous efficiency the peak power efficiency was found to be 12.2 lm/W at the luminance of $470\;cd/m^2$ (15.9 V).

  • PDF

Blue OLEDs Utilizing Spiro[fluorene 7,9'-benzofluorene]-type Compounds as Hosts and Dopants

  • Kim, Joo-Han;Jeon, Young-Min;Jang, Ji-Geun;Ryu, Sang-Ouk;Chang, Ho-Jung;Lee, Chil-Won;Kim, Joon-Woo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.647-652
    • /
    • 2009
  • A novel spiro-type host material, 5-[4-(1-naphthyl)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1PN) and three new dopants, namely, 5-[diphenylamino)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1TPA), 5-[4-(N-phenyl (m-tolyl)amino]-spiro[fluorene-7,9'-benzofluorene] (BH-1MDPA) and 5-[(N-phenyl)-2-naphthyl]amino-spiro[fluorene- 7,9'-benzofluorene] (BH-1NPA) were designed and successfully prepared using the Suzuki or amination reactions. The electroluminescence characteristics of BH-1PN as a blue host material doped with each of the blue dopants were evaluated. The structure of the device is ITO/DNTPD/NPB/BH-1PN:5% dopant/Alq3/Al-LiF. The device obtained from BH-1PN doped with diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)phenyl]-amine (BD-1) showed good color purity, efficiency, luminance, and current-density characteristics.