• Title/Summary/Keyword: Horizontal wing

Search Result 47, Processing Time 0.025 seconds

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

Experimental Analysis of Towing Attitude for I-type and Y-type Tail Fin of Active Towed SONAR (I 형 및 Y 형 꼬리 날개 능동 예인 음탐기의 예인 자세에 대한 실험적 분석)

  • Lee, Dong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.579-585
    • /
    • 2019
  • Increasing the detection probability of underwater targets necessitates securing the towing stability of the active towed SONAR. In this paper, to confirm the effects of tail wing fin on towing attitude and towing stability, two scale model experiments and one sea trials were conducted and the results were analyzed. The scale model tests measured the towing behavior of each of the tail fin shapes according to towing speed in a towing tank. The shape of the tail fin used in the scale model test was tested with an I-type tail fine and four Y-type tail fins, totaling five tail fins of the two kinds. The first scale model test confirmed that the Y-type tail fin was superior to the I-type tail fin in towing attitude and towing stability. The second scale model test confirmed the characteristics of the vertical tail fin height increase and the lower horizontal tail fin inclination angle application shape based on the Y-type tail fin. The shape of the application of the lower horizontal tail fin inclination angle showed the best performance. In order to verify the results of the scale model test, a full size model was constructed, sea trials were performed, and the towing attitude was measured. The results were similar to those of the scale model test.

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

A Study on the Changes of Vertical height in Teeth and Alveolar Bone with Age (증령에 따른 치아 및 치조골의 고경 변화에 관한 연구)

  • Se-Sook Kang;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • The author studied the vertical height of tooth crown and the amounts of alveolar bone resorption with age. All 84 subjects(44 male, 40female) who visited Dental hospital of Wonkwang University with no history of sever periodontal disease and no experience of periodontal surgery. 84 subject were divided into 3 groups by age, that is, group I(28-32yrs), group II(38-42yrs), and group III(48-52yrs). Informal radiogram with bite wing film(horizontal angulation : $0^{\circ}$, vertical angulation : $+5^{\circ}~+10^{\circ}$) were taken on premolar and molar area. The distances from cusp tip to cementoenamel junction (vertical height of tooth crown) and from cementoenamel junction alveolar crest(amount of alveolar bone resorption) were measured, and then recorded data from 946 teeth were statistically analysed. This study was undertaken to obtain the data for age estimation by the changes of tooth crown height and alveolar bone resorption in the point of forensic odontology. The obtained results were as follows : 1. The average crown height of mandibular right 1st. molar was 7.1mm in group I, 6.7mm in group II, and 6.6mm group III, and the average amount of alveolar bone resorption on mandibular right 1st. molar were 1.8mm in group I, 2.5mm in group II, and 3.0mm in group III. Ratio of tooth crown height to amount of alveolar bone resorption was 4.0:1 in groupI, 2.7:1 in group II, and 2.2:1 in group III, the ratio was decreased with age. 2. In comparison with upper teeth and lower teeth in ipsilateral side, the average value of tooth crown height and amount of alveolar bone resorption were slightly higher in upper arch than those in lower arch, but there was not a statistically significant difference. 3. The ratio of height of tooth crown to amount of alveolar bone resorption was decreased with age, and which depended mainly upon the change of amount of alveolar bone resorption rather than the change of tooth crown height.

  • PDF

Estimation of Hydrodynamic Coefficients for AUV-SNUUV I (AW-SNUUV I의 동유체력 계수 추정)

  • Kim Kihun;Kim Joonyoung;Shin Minseop;Choi Hang S.;Seong Woojae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF

Study on the Midwater Trawl Available in the Korean Waters ( V ) - Opening Efficiency of the Otter Board with a Large Float on the Top - (한국 근해에 있어서의 중층 트로올의 연구 ( V ) - 전개판에 대형 뜸을 달았을 때의 전개성능 -)

  • Lee, Byong-Gee;Kim, Min-Suk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 1988
  • Near sea trawlers of Korea sometimes catch pelagic fishes like file fish by using midwater trawl gear even though usually catch bottom fish. It is reasonable to use the specific otter board as well as specific net in bottom trawling and in midwater trawling respectively. But, the trawlers are so small ranging 100 to 120GT, 700 to 100ps that it is very complicated to use different otter board for bottom trawling and for midwater trawling. The otter board for bottom trawling. is also used for the midwater trawling without any change even though the net is changed into the specific one. Although the otter board in the midwater trawling should be lighter than that for bottom trawling, to use otter board for bottom trawling directly for the midwater trawling without any change makes the net easily touch the sea bed and also make the horizontal opening of the otter boards be limited owing to the length of warp in the southern sea of Korea, main fishing ground of midwater trawling, which is 100m or so in depth. That is why the otter board for the midwater trawling should be made lighter than that in the bottom trawling, even if temporary. The authors carried out an experiment to achieve this purpose by attaching a large styropol float on the top of the otter board. In this experiment, underwater weight of the otter board was 630kg and buoyancy of the float was 510kg. To determine the depth and horizontal opening of the otter board, two fish finder was used. A transmitter of 50KHz fish finder was set downward through the shoe plate of otter board to determine the elevation of otter board from the sea bed, and a transmitter of 200KHz fish finder was set sideways on the starboard otter board to be able to detect the distance between otter boards. The obtained results can be summarized as follows: 1. The actual towing speed in the experiment varied 1.1 to 1.8 m/sec. 2. The depth of otter board was within 41 to 25m with float on the top and 45 to 26m without float in case of the warp length 100m, whereas the depth 68-44m with float and 74-46m without float in case of the warp length 150m. This fact means that the depth with float was 9-4% shallower than that without float. 3. The horizontal opening between otter boards was within 34-41m with float and 30-38m without float in case of the warp length 100m, whereas the opening was 44-50m with float and 37-46m without float in case of the warp length 150m. This fact means the opening with float was 10% greater than that without float in case of the warp length 100m, and 15% greater in case of the warp length 150m. 4. The horizontal opening between wing tips by using the otter board with float was 1m greater than by without float in case of the warp length 100m, whereas the opening by with float was 2m greater than by without float in case of warp length 150m. From this fact, it can be estimated that the effective opening area of the net mouth by using the otter board with float could be made 10% greater than by without float in case of warp length 100m, whereas the area with float 20% greater than by without float in case of warp length 150m.

  • PDF

The characteristics on dose distribution of a large field (넓은 광자선 조사면($40{\times}40cm^2$ 이상)의 선량분포 특성)

  • Lee Sang Rok;Jeong Deok Yang;Lee Byoung Koo;Kwon Young Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • I. Purpose In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100cm, size of field under $40{\times}40cm2$) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. II. Method & Materials In this study, using Multidata Water Phantom from standard SSD 100cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. III. Results & Conclusion In comparison with the standard dose data, parameter which measures between SSD 180cm and 350cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  • PDF