• Title/Summary/Keyword: Horizontal tube

Search Result 459, Processing Time 0.03 seconds

Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer (튜브 경사각이 포화풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.327-334
    • /
    • 2008
  • Effects of tube inclination on pool boiling heat transfer have been studied for the saturated water at atmospheric pressure. For the analysis, seven inclination angles varying from the horizontal to the vertical and two tube diameters(25.4 and 30.0 mm) are tested. According to the results, inclination angles result in much change on heat transfer. For the same wall superheat(about $5.3^{\circ}C$) the ratio between two heat fluxes for the $45^{\circ}$ inclined and the vertical has the value of more than five when the tube diameter is 25.4mm. As the inclination angle is increasing from the horizontal to the vertical direction heat transfer is gradually increasing because of the increase in liquid agitation. However the detailed tendency depends on the ratio between the tube length and the diameter.

Effects of Subcooling and Natural Convection on the Melting inside a Horizontal Tube (수평원관내에서 과냉각 및 자연대류가 융해과정에 미치는 영향)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2079-2087
    • /
    • 1993
  • The effects of subcooling and natural convection are studied numerically on the melting process of an initially subcooled phase-change medium filled inside a horizontal circular cylinder. It is postulated that melting continues with the tube wall kept at a constant temperature and with the unmelted solid core fixed. Primary emphasis is placed on the evolution of interface morphology, the local/overall heat transfer rate at the tube wall and at the interface, and the structure of natural convection. The numerical results are mainly presented in terms of the Rayleigh and subcooling numbers. As the degree of subcooling intensifies, the melting rate and the movement of the interface are impeded but the interfaces are of similar shape with the passage of time. The heat transfer characteristics are found to be mostly governed by the formation pattern of natural convection in the liquid phase. Good agreement with available experimental data is found.

Local Pool Boiling Coefficients on Horizontal Tubes

  • Kang Myeong-Gie
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.860-869
    • /
    • 2005
  • Local pool boiling on the outside and inside surfaces of a 51 mm diameter tube in horizontal direction has been studied experimentally in saturated water at atmospheric pressure. Much variation in local heat transfer coefficients was observed along the tube periphery. On the outside surface the maximum and the minimum are observed at ${\theta}=45^{\circ}$ and $180^{\circ}$, respectively. However, on the inside surface only the minimum was observed at ${\theta}=0^{\circ}$. Major mechanisms on the outside surface are liquid agitation and bubble coalescence while those on the inside surface are micro layer evaporation and liquid agitation. As the heat flux increases liquid agitation gets effective both on outside and inside surfaces. The local coefficients measured at ${\theta}=90^{\circ}$ can be recommended as the representative values of both outside and inside surfaces.

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

Introduction to Archimedean Horizontal Stars on Geometric Tube Design (기하학적 튜브디자인과 아르키메데스 수평별 입문)

  • Hwang, Hongtaek
    • Communications of Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • We have announced a series of Archimedean stars on the mathematical art galleries of Bridges conference since 2012. We are developing a systematic approach and methodology about the composition process of Archimedean stars on geometric tube design. We will introduce the various information about the Archimedean horizontal stars under certain introductory level as well as the underlying information of Archimedean stars to provide them as useful sources for certain creative experimental mathematics education.

Experimental Study on the Enhancement of Condensation Heat Transfer on a Single Horizontal Tube Utilizing EHD (전장을 이용한 수평관 주위에서의 응축 열전달촉진에 관한 실험적 연구)

  • 유갑종;추홍록;김석준;이성진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3008-3020
    • /
    • 1994
  • Condensation heat transfer on a single horizontal tube with electric fields (Electro-Hydro-Dynamics, (EHD)) has been studied experimentally. Results are presented for EHD enhanced condensation of R-113 on a single horizontal tube using several electrode geometries. Especially, its attention was focused on the effects of electrode geometry, electric field strength and the gap of the electrode. In this study, single wire, helical, ring and mesh electrode were used. The range of the imposed voltage was 0~20 kV. As the voltage was increased the surface of liquid became an unstable wave, stream jet, liquid column and then liquid extraction in sequence. Among the various kinds of electrodes, the single wire electrode is suitable for practical application.

An Experimental Study on the Generation of Air-core with Swirl Flow in a Horizontal Circular Tube (수평원통 관에서 선회유동의 공기동 발생에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.922-930
    • /
    • 2004
  • An experimental investigation was performed to study on the generation of air bubble and air core with swirling flow in a horizontal cicular tube. To determine some characteristics of the flow, 2D PIV technique is employed for velocity measurement in water. The experimental rig is manufactured from an acryl tube. The test tube diameter of 80mm, and a length of 3000mm. The used algorithm is the gray leve cross-correlation method(Kimura et al. 1986). An Ar-ion laser is used and the light from the laser(500mW) passes through a probe to make two-dimensional light sheet. In order to make coded images of the tracer particles on one frame, an AOM(Acoustic-Optical Modulator) is used. The maximum axial velocities showed near the test tube wall at y/D =0.1 and y/D =0.9 along the test tube. The higher Reynolds number increase, the lower axial velocities are showed in the center of the test tube. The air bubbles are generated from Re =10,000 and developed into air core from the recirculating water pump rpm equal 30Hz. The pressure and temperature are measured across the test tube at X/D=3.33.

Natural Convection Heat Transfer from a Horizontal Heat Exchanger Tube with a Fin (單一핀을 가진 水平管에서의 自然對流 熱傳達)

  • 정한식;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.279-286
    • /
    • 1987
  • An numerical and experimental study has been performed on natural convection heat transfer from a horizontal heat exchanger tube with a fin. At s bare tube, by increasing $C_{T}$ (tube conduction parameter), mean Nusselt number and outer wall temperature are apparently increased at $C_{T}$.leq.300, slightly increased at $C_{T}$>300 and they can be represented in an exponential function of $C_{T}$. Natural convection heat transfer characteristics for the tube with a fin at given Rayleigh number are well agreed by those for an isothermal cylinder at a modified Rayleigh number. The local fin Nusselt number of the tube with a downward fin is much higher than that of the tube with an upward fin. The comparisons between numerical and experimental results showed good agreement.reement.

Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube (수평관내 초임계 영역의 Co2 냉각 열전달 특성)

  • Son, Chang-Hyo;Lee, Dong-Gun;Oh, Koo-Kyu;Jeong, Si-Young;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF