• 제목/요약/키워드: Horizontal traction wheel

검색결과 5건 처리시간 0.019초

토양-러그 상호작용의 특성 해석 (Analysis of Soil-Lug Interaction Characteristics)

  • 조성찬;;이규승;;이용국;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

초고속선 실험을 위한 신형식 예인전차의 현가장치 설계시안 (Design Idea of Suspension for Traction Wheel of Novel High Speed Towing Carriage)

  • 구성필;김효철;함연재
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.407-413
    • /
    • 2013
  • In the conventional towing tank, the ordinary towing carriage has a speed barrier which caused not only by the limitation of the length of towing tank but also the limitation of acceleration. Therefore the length of the towing tank should be decided carefully from the planning stage of the towing tank construction. Consequently the acceleration of the towing carriage should be taken less than 0.06g practically to avoid the slip of the wheel on rail. Due to the increasing demand of the high speed experiments on the development of special novel ship, the requirement of the high speed towing carriage is continuously increased recently. When the minimum measuring time of the towing experiment is prescribed as five seconds, the carriage should be accelerated with higher than 0.12 g to get the speed of 18 m/sec even in the towing tank having a length of 400m in length approximately. This means that the requirement of acceleration is bigger than twice of the ordinary practices of carriage acceleration. In such a condition the exerted total power of motor could not converted to traction force for the acceleration of the carriage without slip. To over come these difficulties a pair of horizontal traction wheels are reinforced to each of the ordinary vertical carrier wheel and appropriate suspension system has been devised for the towing tank of super high speed operation. It is believed that the design of novel suspension system adaptable for the high speed acceleration of towing carriage will play a important role as a reference for the remodeling of the towing tank for high speed experiment.

러그의 설계요인(設計要因)이 구동륜하(驅動輪下)의 토양반력(土壤反力)에 미치는 영향(影響) (Effects of Lug Design Factors of Driving Wheel on Soil Reaction)

  • 김진현;정성원;김창수;이기명
    • Journal of Biosystems Engineering
    • /
    • 제12권1호
    • /
    • pp.14-19
    • /
    • 1987
  • 본(本) 연구(硏究)는 구동륜(驅動輪)의 러그 설계요인(設計要因)중에 러그 테이퍼각(角), 러그각(角) 및 러그폭(幅)등이 토양반력(土壤反力)에 미치는 영향(影響)을 구명(究明)하기 위하여 모형실험장치(模型實驗裝置)를 제작(製作)하고 모래지반(地盤)의 토양조(土壤槽)를 이용(利用)하여 실험한 결과 다음과 같이 요약(要約)되었다. 1. 설정(設定)슬립이 증가(增加)할수록 토양반력(土壤反力)의 수평분력(水平分力)은 증가하였다. 2. 러그 테이퍼각(角)은 $23^{\circ}$까지 증가할수록 주행성향상(走行性向上)에 그 효과가 큰 것으로 나타났다. 3. 러그각(角)은 주행성향상(走行性向上)에 그 효과가 인정되며 $60{\sim}74^{\circ}$가 적절(適切)한 것으로 나타났다. 4. 러그폭(幅)은 20~30mm까지 토양반력(土壤反力)의 수평분력(水平分力)에는 큰 영향(影響)을 주지 못했다.

  • PDF

가속성능이 우수한 외팔보형 고속예인전차의 설계 (On the Design of Cantilever Type High Speed Towing Carriage with Excellent Acceleration Performance)

  • 김재성;김효철
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.228-236
    • /
    • 2016
  • Extraordinarily the establishment of towing tank has been initiated after the allocation of space at the basement floor of existing building through remodeling procedure. Therefore the asymmetric tank should be unavoidably determined by compromising with the allowable space and existing building structure. Consequently the shape of towing carriage ought to be selected as a cantilever type to match with the given environmental conditions. Finally the major role of the towing tank has been configured on the fundamental research work for the high speed marine vehicles. Due to the limited length of towing tank, it is appeared that the carriage should accelerated with 1.2m/sec2 which is equivalent to twice of the maximum acceleration in ordinary practices on design application of carriage. In such a condition the exerted total power of motor could not be converted to traction force of the carriage without slip for the acceleration. To overcome these difficulties the contact pressure of a horizontal traction wheel to rail has been reinforced by the elastic recovery force of springs on supporting rollers. It is believed that the design experience of the high speed towing carriage under unusual circumferential condition and acceleration barrier could be utilized not only on the design of high speed towing carriage but also on the improvement of existing facilities.

토양수분과 경도가 동력경운기의 견인성능에 미치는 영향 (Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor.)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF