• Title/Summary/Keyword: Horizontal strain

Search Result 284, Processing Time 0.023 seconds

Bacterial Flora of East China Sea and Yosu Coastal Sea Areas 2. Horizontal Distributions of Bacteria Isolated from The Sea Area (여수 연안 및 동중국해의 세균상 2. 분리균의 수평분포)

  • SHIN Suk-U;JUNG Kyoo-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • The results identified for bacterial flora 174, Vibrio spp.132, and coliform group 183 strains isolated from the areas of last China Sea and Yosu coastal sea during from August 6th. to 14th. 1992 were as follow: 40 strains among the 74 strains of bacteria flora isolated from fast China sea area were Pseudomonas spp.$(54\%)$ and 60 strains among the 100 strains isolated from Yosu sea area were Enterobacteriaceae $(60\%)$. Four strains were Vibrio alginoliticus and one strain of V, parahaemolyticus among 5 strains of genus Vibrio isolated from last China Sea. While 54 strains were V. alginolyticus $(43\%)$ and V, parahaemolyticus $(17\%)$ among 127 strains genus Vibrio isolated from Yosu coastal sea area. Seventy nine strains among the 156 strains of coliform group isolated from Vosu sea area were Escherichia coli I $(51\%)$ and each one strain Citrobacter freundii I and II. 3 strains among 27 strains isolated from last China sea area were E. coli$(11\%)$ and 1 strain of C. freundii I. Coliform group was grouped into 16 types by IMViC system, $44^{\circ}C$, gelatin liquefaction test.

  • PDF

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline (지진파 입사방향에 따른 매설관 종방향 응답특성 규명)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Stress-strain Behavior of Hardened Barrier on Soft Soil (연약지반 위에 포설된 고화차수재의 응력-변형 특성)

  • 장연수;이종호;임학수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.607-614
    • /
    • 2000
  • Settlement with crack on the hardened liners may occur in the weak clay due to waste load since the stiffness of the hardened liner is greater than that of the clay layers. Way of reducing deformation crack in the hardened liner is investigated using two computer programs, CONSOL and FLAC. The computer program CONSOL estimates the magnitude of settlement with time in clay layers and FLAC analyses the stress and deformation relationship between the foundation of landfill and waste load. The results show that a representative block of the analyzed area reaches the consolidation settlement of 1.32m, 8.8 years after the disposal of waste started with the degree of consolidation U=90%. The stress within the hardened liner exceeds the allowable vertical stress of 5kg/$\textrm{cm}^2$ and horizontal stress of 1.67kg/$\textrm{cm}^2$ at the concave part of the liner where the main and branch drainage pipes of leachate are located. It was recognized that the thickness of the interested area should be enlarged or the strength of the same area should be improved to tolerate the planned waste load.

  • PDF

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

A Theoretical and Numerical Study on the Effects of Prereinforcement of Tunnel Face (터널막장 선행보강 효과에 관한 이론적.수치해석적 연구)

  • 김광진;문현구
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.328-338
    • /
    • 2001
  • Horizontal tunnel face reinforcement using Fiber Glass Tube(FGT) or steel pipe and pipe roofing techniques are frequently used when the stability of newly excavated tunnel is not guaranteed. However, the mechanical behavior of tunnels using these techniques has not been fully understood so far. Therefore, engineering rule of thumb is commonly applied during designing procedure, and it is difficult to adopt these techniques rationally. In this study, the application of a simplified numerical analysis method based on composite mechanics is verified. The mean field theory and the strain energy theory are used to obtain the equivalence elastic moduli of reinforced soil and rock. Furthermore, a parametric study on the deformational behavior of tunnel face is performed for various patterns of prereinforcement.

  • PDF

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

Comparison of Coefficient of Consolidation and Prediction of Excess Pore Water Pressure of Agricultural Reservoir under Embankment on Soft Ground (연약지반상에 축조된 농업용저수지의 과잉공극수압 예측과 압밀계수의 비교)

  • Lee, Dal-Won;Kim, Eun-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study was carried out to comparison of coefficient of consolidation and the prediction of excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The predicted excess pore water pressure according to ponding was very applicable to practice because it was close to the observed data. Also, for the comparison of coefficient of consolidation, the oedometer, constant rate of strain (CRS), and Rowe cell tests were performed. The coefficient of consolidation at the Rowe cell and CRS tests showed a greate increase than in the oedometer test. The ratio of the vertical and horizontal coefficient of consolidation showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to predicting the required consolidation period in agricultural reservoir.