• Title/Summary/Keyword: Horizontal small tubes

Search Result 33, Processing Time 0.026 seconds

Evaporating heat transfer characteristics of R-22 in small diameter tubes (세관 내 R-22 의 증발 전열 특성에 관한 연구)

  • 최영석
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.134-139
    • /
    • 2000
  • Evaporating heat transfer characteristics of R-22 were measured inside smooth horizontal copper tubes with inner diameters of 3.36 mm and 5.35 mm respectively. The experiments were conducted in the closed loop which was driven by a magnetic gear pump. Experiments were performed for the following range of variables ; mass velocity of refrigerants (200 to 400 $kg/m^2$ .s) saturation temperature ($0^{\circ}C, \; 5^{\circC$}) and quality (0 to 1.0) The main results obtained are as follows : Evaporating heat transfer coefficients in the small diameter tubes (ID<7 mm) were observed to be strongly affected by a variety of diameters and to differ from those in the large diameter tubes. The heat transfer coefficients of the small diameter tubes are higher than those of the large diameter tubes. Comparing the heat transfer coefficients between experimental results and some well-known previous predictions (Shah's correlation Gungor-Winterton's and Kandlikar's correlation) it was very difficult to apply those to small diameter tubes.

  • PDF

Study on the evaporation Heat Transfer Characteristics of R-134a in Small Diameter Tubes

  • Roh, Geon-Sang;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.224-234
    • /
    • 2007
  • Large diameter tubes have been used until comparatively lately. However, small diameter tubes are largely used because of their high efficiency in heat transfer and low cost, recently. This study focuses on the experimental research of the heat transfer coefficients during evaporation process of R-22 and R-134a in small diameter tubes. The evaporation heat transfer coefficients were measured in smooth horizontal copper tubes with ID 1.77, 3.36 and 5.35 mm. The evaporation heat transfer coefficients in the small diameter tubes (ID <7 mm) were observed to be strongly affected by the size of tube diameters and to differ from those of general predictions in the large diameter tubes. The heat transfer coefficients of ID 1.77 mm copper tube were higher by 20 and 30 % than those of ID 3.36 mm, ID 5.35 mm copper tubes respectively. Also, it was found that it was very difficult to apply some well-known previous predictions (Shah's, Jung's. Kandlikar's and Oh-Katsuda's correlation) to small diameter tubes. Based on the data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.

Experimental Investigation of Flow Boiling Heat Transfer of R-410A and R-134a in Horizontal Small Tubes

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1141-1146
    • /
    • 2009
  • Experimental investigation on two-phase flow boiling heat transfer of R-410A and R-134a in horizontal small tubes is reported. The pressure drop and local heat transfer coefficients were obtained over heat flux range of 5 to $40\;kW/m^2$, mass flux range of 70 to $600\;kg/m^2s$, saturation temperature range of 2 to $12^{\circ}C$, and quality up to 1.0 in test section with inner tube diameters of 3.0 and 0.5 mm, and lengths of 2000 and 330 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects of mass flux, heat flux, and inner tube diameter, on pressure drop and heat transfer coefficient are presented. The experimental results are compared against several existing correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes is developed.

  • PDF

Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube (R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향)

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

Evaporation Heat Transfer Characteristics of R-22, R-134a in Small Diameter Tubes (세관내 R-22, R-134a의 증발 전열 특성에 관한 연구)

  • 홍진우;박승준;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1081-1089
    • /
    • 2000
  • Evaporating heat transfer coefficients of R-22 and R-134a were measured in smooth horizontal copper tubes with inner diameters of 1.77, 3.36 and 5.35mm, respectively. The experiments were conducted in a closed loop, which was driven by a magnetic gear pump. Experiments were performed for the following range of variables: mass velocity (200 to 400 kg/$m^2$.s), saturation temperature($0^{circ}C,; 5^{\circ}C$) and quality(0 to 1.0). Main results obtained are as follows: evaporating heat transfer coefficients in the small diameter tubes (ID<7mm) were observed to be strongly affected by various diameters and to differ from those in the large diameter tubers. The heat transfer coefficients of the small diameter tubes were higher than those of the large diameter tubs. And it was very difficult to apply some well-known previous predictions (Shah`s, Gungor-Winterton`s and Kandlikar`s correlation) to small diameter tubes.

  • PDF

Condensing Heat Transfer Characteristics of R-22 and R-134a in Small Diameter Tubes (세관내 R-22와 R-134a의 응축 전열 특성에 관한 연구)

  • Hong, Jin-U;No, Geon-Sang;Jeong, Jae-Cheon;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • Condensing heat transfer coefficients of R-22 and R-134a were measured in smooth, horizontal copper tubes with inner diameters of 1.77mm, 3.36mm, and 5.35mm, respectively. The experiments were conducted in the closed loop, which was driven by a magnetic gear pump. Data are presented for the following range of variables : mass velocity from 200 to 500kg/$m^2$.s and quality from 0 to 1.0. The heat transfer coefficients in the small diameter tubes (ID < 7mm) were observed to be strongly affected by various diameters and the heat transfer characteristics in the small diameter tubes differed from those in the large diameter tubes. Heat transfer coefficients in the small diameter tubes are higher than those in the large diameter tubes at the same experimental condition. It was found that some well-known previous correlations(Shahs correlation and Cavallini-Zecchins correlation) were not suitable for small diameter tubes.

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

Study on the Condensation Heat Transfer Characteristics in Small Diameter Tubes (세관 내 응축 열전달 특성에 관한 연구)

  • 박기원;노건상;홍진우;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2004
  • The Condensation heat transfer coefficients of R-22 and R-l34a were measured in smooth horizontal copper tubes with inner diameters of 1.77. 3.36 and 5.35 mm. respectively. The experiments were conducted in a closed loop. which was driven by a magnetic gear pump. They were Performed for the following ranges of variables: mass flux (200 to $500\;kg/\textrm{m}^2{\cdot}s$) saturation temperature $30^{\circ}C$ and quality (0 to 1.0). The main results obtained are as follows Condensation heat transfer coefficients in the small diameter tubes (ID < 7 mm) were observed to be strongly affected by inner diameter change and to differ from those in the large diameter tubes. The heat transfer coefficients in the small diameter tubes were 20 ~ 40 % higher than those in the large diameter tubes as the inner diameter of the tube was reduced. Also. it was very difficult to apply some well-known previous predictions (Cavallini-Zecchin's. Haraguchi's and Dobson's correlation) to small diameter tubes. Based on an analogy between heat and mass transfer the new correlation is Proposed to predict the experimental data more accurately.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

Study on the Single-Phase Heat Transfer and Pressure Drop Characteristics of R-718 in Small Diameter Tubes (세관 내 R-718의 단상 열전달 및 압력강하 특성에 관한 연구)

  • 박기원;권옥배;홍진우;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.522-530
    • /
    • 2004
  • Single-phase heat transfer coefficients and pressure drops of R-718 were measured in smooth, horizontal copper tubes with inner diameters of 3.36 ㎜, 5.35 ㎜. 6.54 ㎜ and 8.12 ㎜, respectively. The experiments were conducted in the closed loop, which was driven by a magnetic gear pump. Data are presented for the following range of variables : Reynolds from 1000 to 20000. Single-phase heat transfer coefficients increased by 10∼30 % as the inner diameter of tube was reduced and it was found that a well-known previous correlation, Gnielinski's correlation was not suitable for the small diameter tubes. But the pressure drop in the small diameter tubes have been shown slightly deviations with Blauius' correlation. Based on an analogy between heat and mass transfer. the new heat transfer correlation is proposed to predict the experimental data successfully.