• 제목/요약/키워드: Horizontal plates

검색결과 142건 처리시간 0.026초

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • 제31권6호
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

수평형(水平型) 이열(二列) 조합판(組合板)의 투과율(透過率) 산정(算定)을 위한 실험적(實驗的) 연구(硏究) (Experimental Study on Energy Transmission Rate of Horizontal Dual Plate by Random Wave System)

  • 권혁민;김영학;기성태
    • 대한토목학회논문집
    • /
    • 제28권4B호
    • /
    • pp.421-428
    • /
    • 2008
  • 최근 들어 우리나라 전해역에 걸쳐 발생하고 있는 침식은 사회적인 문제가 되어왔다. 하지만, 해안구조물에 의한 기존의 방법으로 해안선을 보호하는 것이 "파랑장에 친화적인가?"라는 관점에서 개선의 여지가 있다. 새로운 형식의 철재형 이안제는 권혁민 등(2007)에 의해 제안되었다. 본 형식은 다수의 파일과 상부에 파랑진행방향과 수평으로 설치된 소파장치로 구성되어 있다. 본 형식은 해수유통원활, 대수심 축조수월, 공기단축 등의 장점이 있다. 본 연구는 소파제로서 철재형 이안제의 상부에 거치가 가능한 이열 조합판의 투과율을 실험적으로 평가했다. 일방향 불규칙파 시스템에 의한 모형실험을 통하여 반사율, 소파율, 투과율에 관하여 분석했다. 실험결과, 파형경사가 클수록 그리고 조합판의 폭-파장비가 클수록 투과율이 작아짐을 보였다. 본 연구는 이열 소파판 조합에 대하여 투과율 산정을 위한 직선식을 제안했다.

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능 (Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance)

  • 홍원기;응엔 반 티엔;응엔 만 컹;쿤디마나 에릭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

방사성물질 수송용기 충격완충제 케이스의 좌굴변형에 의한 충격흡수효과 (Impact energy absorbing effect by the buckling of impact limiter's case of radioactive material transport cask)

  • 구정회;서기석;민덕기;김영진
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.826-833
    • /
    • 1998
  • The energy-absorbing characteristic of impact limiters affects the cask design so significantly that it should be evaluated as accurate as possible. The objective of this study is to find the influence of the impact limiter's steel case and gusset plates which enclose the shock absorbing cellular material on the impact energy absorption. The influence of impact limiter's steel case and gusset plate stiffeners on the impact energy absorption behavior under horizontal drop impact was evaluated for a radioactive isotope transport cask. Though the impact limiters mitigate the impact damage of the cask, the impact limiter's steel case and gusset plate stiffeners increase the impact force so significantly that should be designed as soft as possible. The impact analysis without considering impact limiter's steel case and gusset plates stiffener gives non-conservative results, so the stiffness of the steel case and gusset plates should be considered in impact analysis.

Multi-National Integrated Car-License Plate Recognition System Using Geometrical Feature and Hybrid Pattern Vector

  • Lee, Su-Hyun;Seok, Young-Soo;Lee, Eung-Joo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1256-1259
    • /
    • 2002
  • In this paper, we have proposed license plate recognition system for multi-national vehicle license plate using geometric features along with hybrid and seven segment pattern vectors. In the proposed system, we suggested to find horizontal and vertical relation after going through preparation process with inputted real-time license plate image of Korea and Japan, and then to classify license plate with using characteristic and geometric information of license plates. It classifies the extracted license plate images into letters and numbers, such as local name, local number, classification character and license consecutive numbers, and recognize license plate of Korea and Japan by applying hybrid and seven segments pattern vectors to classified letter and number region. License plate extraction step of the proposed system uses width and length information along with relative rate of Korean and Japanese license plate. Moreover, it exactly segmentation by letters with using each letter and number position information within license plate region, and recognizes Korean and Japanese license plates by applying hybrid and seven segment pattern vectors, containing characteristics related to letter size and movement within segmented letter area. As the result of testing the proposed system in real experiment, it recognized regardless of external lighting conditions as well as classifying license plates by nations, Korea and Japan. We have developed a system, recognizing regardless of inputted structural character of vehicle licenses and external environment.

  • PDF

실험적 방법에 의한 두 평판 사이의 난류 열대류의 해석 (Experimental study of turbulent thermal convection between two flat plates)

  • 윤효철;정명균
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1138-1149
    • /
    • 1988
  • 본 연구에서는 논란의 여지가 많은 문제점을 구간별 특성 척도 분석으로 보다 명확히 하고, 매질이 물과 공기인 경우 실험을 통하여 난류 열대류 구조를 분석하여 척도분석 및 Kraichnan등의 분석을 통해 확인된 바 있는 지수법칙층의 존재를 확인하 고자 한다.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.