• Title/Summary/Keyword: Horizontal drain method

Search Result 49, Processing Time 0.023 seconds

Sensitivity Analyses of Influencing Factors on Vertical Drain with Probabilistic Method (확률론적 해석법에 의한 연직배수 영향인자 민감도 분석)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeong, KiI-Soo;Kim, Dong-Gun
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.83-92
    • /
    • 2006
  • A probabilistic analysis model. one of reliability analysis methods introducing the concept of variables, was developed to investigate the uncertainty of dominant factors influencing the degree of consolidation in the radial consolidation theories. Based on the developed probabilistic analysis model, sensitivity study of those factors was performed to find their trends of affecting the degree of consolidation in the vertical drain method. Various radial consolidation theories, proposed by Barron(1948), Hansbo(1979), Yoshikuni(1979) and Onoue(1988), were used for this parametric study with the influencing factors such as size of smear zone, reduction ratio of permeability in the smear zone, discharge capacity, permeability for horizontal flow and coefficient of consolidation for horizontal flow. As results of this sensitivity study, for the given consolidation theory, contribution of each factor to the degree of consolidation was figure out and compared to each other. For the given value of each factor, the sensitivity to the degree of consolidation in the various theories was evaluated and their applicability and limitations were assessed.

  • PDF

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Investigation of Uncertain Factors Affecting on Designing Prefabricated Vertical Drain (PVD 설계 시 고려할 불확실성 요소에 관한 연구)

  • Lee, Song;Choi, Woo-Jin;Kim, Chang-Soo
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.459-465
    • /
    • 2001
  • The Prefabricated Vertical Drain(PVD) method is most widely used technique to accelerate the consolidation process and to strengthen the weak clayey soil in situ. Uncertainty in the consolidation process via the Prefabricated Vertical Drain(PVD), and the effects of uncertainty on the design of PVDs, are investigated in this paper, Among the effect factors, the coefficient of horizontal(radial) consolidation, C$\sub$h/, is the most important and sensitivity analysis of the degree of consolidation with respect to the other effect factors are carried out. For the reliable determination of uncertain quantities, the laboratory and in-situ tests are carried out. Henceforth, probability analysis that take the uncertainty into account are executed and reliable design method is provided in practice.

  • PDF

Evaluation of Discharge Capacity for Gravel mat due to Geosynthetic Using Calibration Chamber Test (모형실험을 통한 토목섬유 적용에 따른 쇄석배수층 통수능 평가)

  • Kim, Jae-Hong;Im, Eun-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2014
  • To create a large-scale complex, it is often the case to perform ground improvement by using vertical drain method after the reclamation of coastal soft ground, for construction period shortening and stable site renovation. During this process, the pore water migrates to the horizontal drainage layer of the ground surface through the vertical drain installed in the soft ground and discharged out to the open. In the past sand was used as the material for the horizontal drainage layer in numerous cases, however recently, due to material shortage and high pricing, the use of crushed stones has increased. To prevent mixing of the materials between the horizontal drainage layer and the upper landfill, geosynthetics (PPMat) are installed. However, the use of geosynthetics results in high additional cost for material purchase and installation, therefore it is necessary to examine the validity of the installation itself. In this study, to verify the necessity, model tests were performed. Results from the model tests indicate that the drainage ability of the horizontal drainage layer is barely affected by the application of geosynthetics.

A Study on the Evaluation Criteria of Drainage Performance by Measurement of Horizontal Drainage Flow Rate by Damage Degree by Interior Model Construction Experiment (실내 모형토조실험에 의한 손상도별 수평배수공 유출량 측정을 통한 배수성능 평가 기준 제안)

  • Suhwan Choi;Donghyuk Lee;Jeonghoon Shim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2023
  • In order to prevent slope disasters caused by rainfall, it is very important to quickly exclude rainfall. In Korea, horizontal drainage holes with excellent economic feasibility and construction performance are generally applied as a method to lower the underground water level. However, horizontal drainage holes constructed on the site are often uniformly constructed regardless of the presence or absence of other water or ground conditions, and it is often difficult to expect drainage performance of horizontal drainage holes due to poor maintenance. In this study, an artificial ground was created using model construction and horizontal drainage experiments were conducted to measure the amount of horizontal drainage drain in a certain amount of control area 0%, 25%, 50%, 75%, and an evaluation table (draft) that can quantitatively evaluate horizontal drainage based on measurements and design documents is proposed as basic data.

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

A Study on the Effect of Improvement Boundary of Vertical Drain Method by Finite Element Analysis (유한요소해석을 이용한 연직배수재의 타설범위에 따른 개량효과에 관한 연구)

  • Chang, Y.C.;Kim, J.H.;Lee, J.S.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • Soft foundation is extensively distributed in coastal areas including our local regions. Embankment load on such soft foundation causes displacement due to lack of base ground supports. Long-term consolidation can result in settlement and destruction of shear failure and structure. Therefore, a variety of vertical drain methods are applied to construction sites to prevent base from breaking and changing for secure construction. This study analyzed the patterns of changes displacement to determine efficient range of improvement since range of vertical drain material determines vertical and horizontal changes based on the width range of under ground improvement. Changes of intensity with distance from embankment edge were also analyzed in the field study of embankment slope.

  • PDF

Application on Soft Ground Improvement Method using Horizontal Drainge Pipe System (수평배수관망을 이용한 연약지반 처리공법의 적용성 평가)

  • Yoo, Chan-Ho;Kang, Soo-Yong;Hong, Soon-Yong;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1158-1163
    • /
    • 2009
  • In this study, PSD system to improve the soft ground was developed by using a horizontal drainage pipe. PSD system is direct drain method for the disappearance of excess pore-water pressure which is caused by fill on soft ground. To conduct the field test construction in order to evaluate application of the PSD system. To estimate the behavior characteristics on settlement in which constructed by PSD system and compared the behavior characteristics with the conventional soft ground improvement method result.

  • PDF

A Behavior Ana1ysis of Clayey Foundation Improved with Pack Drain (Pack-Drain으로 개량된 점토지반의 거동해석)

  • 오재화;남기현;이문수;허재은;김영남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.116-127
    • /
    • 1996
  • This paper dealt with FEM analysis of foundation improved with pack drain. The theory on pack drain was scrutinized and observed values in the field were compared with numerical results. Work site of Kwangyang container pier was selected as a ease study in which measurement of settlement and pore water pressure was accurately carried out. Biot's consolidation equation was selected as governing One, coupled with modified Camclay model as constitutive one. Christian and Boehmer's numerical technique was adopted. Behavior of foundation with pack drain is not simple but very complicated. Discontinuity resulted from rigidity difference between adjacent materials, smear effect and complicated boundary conditions should be considered in the behavior analysis of foundation behavior. The results of numerical analysis were influenced by smear zone. In relevant to this effect, finite element analysis was carried out using the reduced horizontal coefficient of permeability in the smear zone; The numerical results were compared with observed values in surface settlement. including pore water pressure. However only lateral di5plaoement by numerical ana1Ysis was shown since its measurement was not performed in the field. The predication of settlement to be developed later can be effectively employed for the obtimization of construction. The predication of residual settlement using the data measured in the field was made by Hoshino, Asaoka and hyperbolic method. Among them, the hyperbolic method proved best one. Settlements accorded well between numsrical and observed values while pore pressure showed a slight difference. Lateral displacement showed largest values at constant distance from ground surface. The validation of foundation analysis improved with pack drain by computer program employed in this study selecting modified Cam-clay model was satisfactorily secured.

  • PDF

Leachate Behavior within the Domestic Seashore Landfill(II)- Numerical Analysis of Pumping Method for Reducing Leachate Level - (폐기물 매립지 내에서의 침출수 거동(II)- 누적수위 저감을 위한 양수법의 수치해석 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.111-120
    • /
    • 1999
  • Leachate flow behavior due to intermediate cover soil of low hydraulic conductivity and the applicability of pumping method for reducing the leachate level in the landfill are analyzed with the numerical flow model, MODFLOW. Using the hydraulic conductivity and storativity data obtained from the field pumping and slug tests(Jang and Cho, 1999), the hydraulic condition within the landfill is validated. The optimum rate of pumping, the radius of influence, and the efficiency of horizontal drain are analyzed for reducing the leachate level in the landfill. From the results of the analyses, the barrier effect that the buried cover soil of low hydraulic conductivity prevents the vertical movement of leachate flow through the cover soil, which is found from the in-situ geotechnical studies(Jang and Cho, 1999), is identified again. Also, the installation of horizontal drains to the pumping well can increase the pumping rate from 120 ton/day per a well to 300 ton/day. The length of horizontal drain did not influence significantly on the drawdown-time curve of leachate in the landfill.

  • PDF