• Title/Summary/Keyword: Horizontal division

Search Result 687, Processing Time 0.027 seconds

Organic Semiconducting Thin Films Fabricated by Using a Pre-metered Coating Method for Organic Thin Film Transistors (정량 주입(Pre-metered) 코팅 방식을 이용한 유기 트랜지스터 반도체 박막 제작 연구)

  • Cho, Chan-Youn;Jeon, Hong-Goo;Choi, Jin-Sung;Kim, Yun-Ki;Lim, Jong-Sun;Jung, J.;Cho, Song-Yun;Lee, Chang-Jin;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.531-536
    • /
    • 2012
  • We herein present results of flat and uniform polymer-blended small molecular semiconductor thin films. Which were produced for organic thin film transistors (OTFTs), using a simple pre-metered horizontal dipping process. The organic semiconducting thin films were composed of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-PEN) composite blended with a polymer binder of poly(${\alpha}$-methylstyrene) (PaMS). We show that the pre-metered horizontal-dip-coating(H-dip-coating) process allowed the critical control of the thickness of the blended TIPS-PEN:PaMs thin film. The fabricated OTFTs using the TIPS-PEN:PaMs films exhibited maximum field-effect mobility of $0.22\;cm^2\;V^{-1}\;s^{-1}$. These results demonstrated that H-dip-coated TIPS-PEN:PaMS films show considerable promise for the production of reliable, reproducible, and high-performance OTFTs.

The Measurement of Road Alignment Using GPS-IMU System (GPS-IMU 통합 시스템을 이용한 도로기하구조 측정에 관한 연구)

  • Park, Jae-Hong;Yun, Duk-Geun;Sung, Jung-Gon;Lee, Jun-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.61-69
    • /
    • 2012
  • It is important for highway maintenance and safety assessment to get the accurate highway geometric information. However, it is difficult to acquire good highway geometric information due to missing blueprints or deteriorated highway sections. This research, to get highway geometric information rapidly, has developed a highway geometric analysis algorithm that uses data from vehicles with GPS-IMU integrated system. In conclusion, the result shows that 3.38% of error-ratio for the horizontal alignment and 0.083 absolute value difference for vertical grade comparing with highway drawings. Therefore, the result suggest that the developed method can be applied to the road safety inspection or road safety audit.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

Evaluation of the Applicability of Rice Growth Monitoring on Seosan and Pyongyang Region using RADARSAT-2 SAR -By Comparing RapidEye- (RADARSAT-2 SAR를 이용한 서산 및 평양 지역의 벼 생육 모니터링 적용성 평가 -RapidEye와의 비교를 통해-)

  • Na, Sang Il;Hong, Suk Young;Kim, Yi Hyun;Lee, Kyoung Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Radar remote sensing is appropriate for rice monitoring because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. And we applied the relationships to crop monitoring of paddy rice in North Korea. As a result, plant height and Leaf Area Index (LAI) increased until Day Of Year (DOY) 234 and then decreased, while fresh weight and dry weight increased until DOY 253. Correlation coefficients revealed that Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients were correlated highly with plant height (r=0.95), fresh weight (r=0.92), vegetation water content (r=0.91), LAI (r=0.90), and dry weight (r=0.89). Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients. Concerning the evaluation for the applicability of the LAI distribution from RADARSAT-2, the LAI statistic was evaluated in comparison with LAI distribution from RapidEye image. And LAI distributions in Pyongyang were presented to show spatial variability for unaccessible areas.

Driveability Analysis of Non Welding Composite Pile (무용접 복합말뚝의 항타관입성 분석에 관한 연구)

  • Shin, Yun-Sup;Kim, Nam-Ho;Boo, Kyo-Tag;Lee, Jong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.729-737
    • /
    • 2008
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.

  • PDF

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Bubble and Liquid Velocities for a Bubbly Flow in an Area-Varying Horizontal Channel (유로단면이 변하는 수평관 내 기포류에서의 기포 및 액체 속도)

  • Tram, Tran Thanh;Kim, Byoung Jae;Park, Hyun Sik
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.20-26
    • /
    • 2017
  • The two-fluid equations are widely used to simulate two-phase flows in a nuclear reactor. For the two-fluid momentum equation, the wall and interfacial drag terms play an important role in predicting a two-phase flow behavior. Since the bubble density is much smaller than the water density, the bubble accelerates faster than the liquid in a nozzle. As a result, the bubble phase becomes faster than the liquid phase in the nozzle. In contrast, the opposite phenomena occur in the diffuser. The purpose of our study is to experimentally show these behaviors in an area-varying channel such as nozzle and diffuser. Experiments were made of turbulent bubbly flows in an area-varying horizontal channel. The velocities of the bubble and liquid phases were measured by the PIV technique. It was shown that the two-phase velocities were no longer close to each other in the area-varying regions. The bubble was faster than the liquid in the nozzle; in contrast, the bubble was slower than the liquid in the diffuser. Code simulations were also performed using the MARS code. By replacing the original wall drag model in the MARS code with Kim (1)'s wall drag partition model, we obtained the simulation results being consistent with experimental observations.

3D Numerical Study of Horizontal Falling Film Evaporator in Multi Effect Distillation (MED) Plant (MED 담수기내 수평관 강하막식 증발기의 3D 수치해석적 연구)

  • Kim, Soo Jae;Je, Junho;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.513-522
    • /
    • 2013
  • In the present work, a numerical study of a horizontal falling film evaporator in a multi-effect distillation (MED) plant is performed. Tube bundles in the evaporator are described as porous media, and a volume-averaged method is applied. To calculate the fluid flow and phase change in the evaporator due to heat transfer in the system, FLUENT and user-defined functions (UDF) are used. To observe the performance of the evaporator under different operational conditions, tests are conducted for a steam mass flux ranging from 0.5 to 2.5 $kg/m^2s$ in the horizontal tube, for mass fraction of the noncondensable gas in the tube inlet ranging from 0% to 1%, and for film Reynolds numbers ranging from 100 to 1,000 for the falling film. The evaporation rate increases with the steam mass flux and Reynolds number. In contrast, the evaporation rate decreases by 0.87% with a 1% increase in the mass fraction of the noncondensable gas in the tube.

Dynamic analysis of horizontal linear vibrating motor using DAFUL program (DAFUL 프로그램을 이용한 슬림형 핸드폰 수평 선형 진동모터의 동적 해석)

  • Choi, Chang-Hwan;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5323-5329
    • /
    • 2013
  • Many companies have tried to develop the horizontally vibrating linear motor, for sliming the smart phone. Mathematical modeling and analysis is one of method to simulate the dynamic performance of the horizonatally vibrating linear motor. However, the horizontally vibrating linear motor vibrates in twisting mode because there are two kinds of force acting on the vibrating part. One is are the horizontal force by Lorentz force. The other is the vertical force by attraction force between magnet of vibrating part and bracket and the gravity force of vibrating part. However, those are very difficult to be included in mathematical modeling which generate the simulation errors. In this paper, we perform MFBD (multi flexible body dynamics) simulation using commercial dynamic analysis program "DAFUL". In our new model, the force effects those are neglected in mathematical model, are included. For the verification, the simulation results are compared with the experiment results with manufactured prototype.