• Title/Summary/Keyword: Horizontal displacement quantity

Search Result 5, Processing Time 0.018 seconds

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge (인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정)

  • Ok, Su Yeol;Moon, Hyun Su;Chun, Pang-Jo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1655-1665
    • /
    • 2014
  • Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System (복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석)

  • Lee, Yeon-Jong;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.167-175
    • /
    • 2018
  • This research deals, The characteristics of mechanics and behavior of the tube structural systems, It has been investigated and considered conventional theory and case models, It has shown the suitability, The best location, And optimal shape of the unit module system, Considered variables materials of stiffness increase and decrease in hybrid tube structural systems this study carried out adapting analysis of statistical concepts. In a concrete way, This study exams the effect of reducing horizontal displacement and the shear lag phenomenon, Also, The purpose of this study is to utilize the basic data on the design and study of future high-rise hybrid structural system using this research. As a result, The framed- tube structural system does not effectively cope with horizontal behavior of high-rise buildings, The results of using varying material tested resistance factors and lateral loads in hybrid tube structural system, When each material is compared Bracing material is identified as a key factor in lateral behavior. In a ratio of material quantity framed-tube structural system, The level of sensitivity affecting the horizontal displacement is greater then the beam's column, In case of braced tube structural system, Braced appeared to be most sensitive in comparison of material quantity ratio in columns and beams.

Mechanical Properties of the Ground Improved by High Pressure Jet-Grouting and Analysis of Deformation of Propped Retaining Walls (고압분사주입공법으로 보강된 개량체의 특성 및 흙막이벽의 변형해석)

  • 심태섭;주승완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.98-105
    • /
    • 2000
  • Recently, the construction method of high pressure jet-grouting is in wide-use, for the purpose of structure foundation ground, reinforcing of ground behind propped retaining walls and cut-off in order to perform safe construction of underground excavation work. This study was performed a serious of tests of field permeability and unconfined compressive strength upon ground improved established on the ground behind propped retaining walls and examined proper jet mechanism by changing the construction parameter value of high pressure jet-grouting. In addition, we got the conclusion like the followings as a result of inspecting the condition of earth pressure distribution and deformation, using elasto-plastic method and FEM. 1. In that characteristics of strength of ground improved, with the same condition of construction parameter, unconfined compressive strength of sand gravel is shown bigger than that of silty sand by about 1.6 times and cut-off effect is shown to have effect of reducing the permeability of original ground by about 10$^{-2}$ ~10$^{-3}$ cm/s. 2. As a result of analysis of figures of horizontal displacing quantity of propped retaining walls materials regarding before and after High pressure jet- grouting through FEM, the reducing quantity of 0.1~0.3mm in maximum horizontal displacement is shown.

  • PDF

Characteristic of a Soft Ground Behavior Subjected to Static and Dynamic Loads (A Study on the Model Test) (정하중 및 동하중이 작용하는 연약지반의 거동특성(비교모형실험))

  • Kim, Jong-Ryeol;Kang, Jin-Tae;Lee, Chi-Yeal;Part, Yong-Myun;Jeong, Jea-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.111-118
    • /
    • 2008
  • In the study a 2 dimensional model test was executed to grasp the effect of the taking load of equipments on the ground when improving a soft ground like dredging reclaimed ground. The static load and the dynamic load in the consolidated model ground was $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively. After consolidating far two months by consolidation load of $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively, the ultimate bearing capacity was $0.16kg/cm^2,\;0.19kg/cm^2,\;0.24kg/cm^2$ respectively. And the energy price of dynamic load test at the same point as the settlement of static load test indicated $E=336{\sim}945kg{\cdot}cm,\;E=252{\sim}780kg{\cdot}cm\;and\;E=323{\sim}727kg{\cdot}cm$ for each consolidation load. When the static load and the dynamic load operated at the same ground condition, the heaving quantity was bigger in the case of the dynamic load than in the case of the static load, and the horizontal displacement quantity the in the case of dynamic load was exhibited very deficiently compared to the quantity in the case of static load test.

A study on reduction effects of the ground loss in pre-loading (선행하중 재하시 지반손실 감소효과에 관한 연구)

  • Kim, Bong-Yoo;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.224-231
    • /
    • 2005
  • The ground excavation causes the deformation of the ground where the neighborhood structure is located. The ground deformation result in the vertical settlement of the neighborhood structure as well as the horizontal displacement of the temporary earth retaining structures. The decreased volume of the soil due to the ground settlement is defined as 'the ground loss quantity' or 'the ground loss'. When excavation is performed nearby existing structures, retaining walls should be designed and constructed to minimize the ground loss. Among various methods for reducing the ground loss, this study introduces the pre-loading method which has been recently developed. The reduction effect of the ground loss by pre-loading has been found to be larger as using a wall with relatively smaller rigidity.

  • PDF