• 제목/요약/키워드: Horizontal control system

검색결과 433건 처리시간 0.03초

Performance Improvement of the Horizontal Control System for a Tractor Implement Using Sensor Signal from the Front Axle

  • Ro, Young-Min;Moon, Jun-Hee;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.67-74
    • /
    • 2016
  • Purpose: Many tractors have adopted the horizontal control system designed to maintain the three-point mounted implements in horizontal position when they are tilted sideways. The control system rotates the implement in the opposite direction to the inclination of rear axle of the tractor. However, the current control system was found to have poor performance in accuracy and response. A new control system was therefore developed to improve the performance. Methods: The new control system was designed to get the response of the implement to be started earlier by using the tilt information from the front axle of the tractor. By this approach, the rotation of the implement can be adjusted as required to make it horizontal at the expected time, even though the response is slow. The optimal values of the control parameters for the new system were determined by computer simulation and validated by a performance test conducted with an obstacle of 120 mm height on a flat concrete surface. The performance of the control system was evaluated by the root mean square error (RMSE) of the rotation angle of the implement with respect to the actual inclination of the rear axle. Results: The new control system reduced the RMSE of the current control system by 44.6% indicating a high performance improvement. The inclination of the front axle was easily obtained from a sensor mounted on the front axle of the tractor and used as input to the new control system. Conclusions: The method of getting the response of the implement to be started earlier by utilizing the inclination information of the front axle can be applied to improve the performance of the current control system at least cost.

중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석 (An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device)

  • 강주원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향 (Effects of Minimum Horizontal Load on Structural Safety of System Supports)

  • 정대현;김경윤;원정훈
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘 (A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter)

  • 홍현수;박찬국;한형석;이장규
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF

이중 아웃리거 구조 시스템의 한계 세장비에 대한 연구 (Study on the Limit Slenderness of a Double Outrigger System)

  • 양재광;강호근;박성수
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.11-18
    • /
    • 2018
  • Due to the recent overpopulation of urban cities, land shortage and soaring land prices have caused an increase in the demand for high-rise buildings. To build buildings on a limited land, the size of the building is important. Displacement control by horizontal loads in a skyscraper is critical to securing stability and usability of structures. Several systems have been proposed for efficient horizontal displacement control, and so far the study continues. Among them, the Outrigger System is a representative of the typical horizontal load resistance system. Although studies have been conducted so far to locate the optimal position of the outrigger, studies of the slenderness ratio of the buildings are still insufficient. Based on the Outrigger-Optimized Position equation, this study induces the calculation of the displacement of the outrigger installation building according to the slenderness ratio.

디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향 (Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header)

  • 정영준;김서영;김광호;곽재수;강병하
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

수평축 자세운동이 있는 배에서의 전달정렬 알고리즘 설계 (Design of transfer alignment algorithm in ship of horizontal axis attitude motion)

  • 송기원;전창배;김현백;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.672-675
    • /
    • 1996
  • This paper presents algorithm including Kalman filter for transfer alignment of velocity and quaternion matching method, when master inertial navigation system is a gimbled type and slave inertial navigation system is a strapdown type on a cruising ship which is naturally in motion of horizontal axis attitude. And relative attitudes are considered on a measurement equation for quaternion matching between master INS and slave INS.

  • PDF

Variable stability system control law development for in-flight simulation of pitch/roll/yaw rate and normal load

  • Ko, Joon Soo;Park, Sungsu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.412-418
    • /
    • 2014
  • This paper describes the development of variable stability system (VSS) control laws for the KFA-i to simulate the dynamics of KFA-m aircraft. The KFA-i is a single engine, Class IV aircraft and was selected as an in-flight simulator (IFS) aircraft, whereas the KFA-m is a simulated aircraft that is based on the F-16 aircraft. A 6-DoF math model of KFA-i aircraft was developed, linearized, and separated into longitudinal and lateral motion for VSS control law synthesis. The KFA-i aircraft has five primary control surfaces: two flaperons, two all movable horizontal tails, and one rudder. Flaperons are used for load control, the horizontal tails are used for pitch and roll rate control, and the rudder is used for yaw rate control. The developed VSS control law can simulate four parameters of the KFA-m aircraft simultaneously, such as pitch, roll, yaw rates, and load. The simulation results show that KFA-i follows the responses of KFA-m with high accuracy.

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.