• Title/Summary/Keyword: Horizontal behavior

Search Result 1,016, Processing Time 0.032 seconds

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

An Analysis of Safety Zone Appropriateness of Urban Railway Box Structures by Adjacent Excavation Using Machine Learning Technique (머신러닝 기법을 적용한 인접굴착에 따른 도시철도 박스구조물의 안전영역 적정성 분석)

  • Jung-Youl Choi;Jae-Seung Lee;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.669-676
    • /
    • 2023
  • This study analyzed the relationship between major parameters and numerical analysis results according to various excavations conducted around the urban railway, application of machine learning techniques and verified the scope of influence of the adjacent excavation on the existing urban railway box structure and the appropriateness of the safety area. This study targeted the actual negotiated adjacent excavation works and box structures around the urban railway, and the analysis was conducted on the most representative two-line box structures. The analysis confirmed that the difference in depth of urban railway, excavation depth of adjacent excavation, and depth of underground water level are important parameters, and the difference in excavation depth of adjacent excavation is the parameter that affects the behavior of underground box structures and is an important requirement for setting safety areas. In particular, the deeper the depth of the adjacent excavation work, the greater the effect on the deflection of the underground box structure, and the horizontal separation distance, one of the important requirements for determining the management grade of the existing adjacent excavation work, is relatively small.

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Material and Behavior Characteristics of Lightweight Embankment for Road Constructed on Soft Ground (연약지반에 시공된 도로용 경량성토체의 재료 및 거동특성)

  • Yea, Geu-Guwen;Lee, Yong-Jae;Kim, Hong-Yeon;Yoon, Gil-Lim;Han, Sang-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2018
  • The purpose of this study is to fabricate a full scale road embankment using lightweight air foamed soil as a soil material on soft ground and to investigate its material characteristics and behavior in order to promote dredged soil utilization and minimize ground improvement. As a result of the laboratory test of the onsite mixed samples, the total unit weight of the specimens decreased almost linearly until curing 28 days. In particular, the total unit weight after 28 days of curing was reduced to about 81% of the slurry state before curing, which will be useful in the formulation of similar native soil materials in the future. The unconfined compressive strength began to decrease with the 14th day of curing as shown in the previous study. When the cement content is increased, the strength decreases sharply at a small strain change after the occurrence of the maximum compressive strength, and the maximum strength is exhibited in a range of a smaller axial strain than normal range. The settlement at the surface layer of the ground due to the lightweight embankment was about 1 / 2.75 of the soil embankment and was in agreement with the unit weight ratio (1 / 2.7) of the embankment materials. This indicates the cause and effect of the settlement due to the difference in self weight of the embankments. Also, the difference in settlement between soil and lightweight embankment increased with increasing depth. This shows that the difference in the point at which the settlement is terminated is clear. The ground horizontal displacement under the lightweight embankment was about 15~20% smaller than that of the soil embankment and the depth of occurrence was also 4.5~5.0m shallower in the lightweight embankment.

Dental Hygienist-Led Dental Hygiene Process of Care for Self-Support Program Participants in Gangneung (강릉시 자활근로사업 참여자 대상 치위생 과정 사례보고)

  • Yoo, Sang-Hee;Kwak, Seon-Hui;Lee, Sue-Hyang;Song, Ga-In;Bae, Soo-Myoung;Shin, Sun-Jung;Shin, Bo-Mi
    • Journal of dental hygiene science
    • /
    • v.18 no.6
    • /
    • pp.327-339
    • /
    • 2018
  • This study aimed to provide basic data for establishing the clinical basis for dental hygienist-led dental hygiene process of care by identifying multiple risk factors for self-support program participants in Gangneung city; we also compared oral health status and behavioral changes through customized oral health care. Four dental hygienists who were evaluated for degree of conformity provided dental hygiene process of care to eight self-support program participants who were selected as having an oral health risk among people in the self-support center. The clinical indicators measured during dental hygiene assessment and evaluation and behavioral changes due to dental hygiene intervention were compared and analyzed. With respect to clinical indicators, at the time of probe, the retention rate of patients with gingival bleeding decreased from 61.4% to 14.7% after intervention (p=0.004). Furthermore, the retention rate of patients with a periodontal pocket >4 mm decreased from 15.6% to 5.8% (p=0.001). The average modified O'Leary index of the patients improved from 23 to 40 (p=0.002). Previously, all eight subjects used the vertical or horizontal method of brushing; after dental hygiene care interventions regarding method and frequency of toothbrushing, use of oral care products, and individual interventions, they started using the rolling or Bass method of toothbrushing. Four of eight subjects reported using interdental toothbrushes after intervention. As a result of applying the change model to the transtheoretical behavior change of the subject, the result of strengthening the health behavior was confirmed. For promotion of oral health by the prevention-centered incremental oral health care system, dental hygienist-led dental hygiene management and maintenance is essential. It is thought that continuous research, such as for feasibility evaluation, cost benefit analysis, and preparation of legal systems, is needed to establish and activate dental hygiene management.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

A study on OHIP-14 and EQ-5D of residents in some rural areas (일부 농촌지역 주민들의 OHIP-14와 EQ-5D에 관한 연구)

  • Lee, Eun-Gyeong;Park, Jeong-Hee;Park, Jeong-Ran;Park, Jae-Yong
    • Journal of Korean society of Dental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.197-211
    • /
    • 2011
  • Objectives : OHIP-14 and EQ-5D were used, targeting the residents of farming communities to identify the elements that influence oral cavity's health and quality of life due to health and to identify the importance of oral cavity's health in order to increase health of adults' oral cavity and quality of life via improved health. Methods : This research was conducted from July 17th, 2010 to August 16th, 2010 targeting 600 residents in Goryeong-gun, Gyeongsangbuk-do, aging over 40. The data has been analyzed using Mann-Whitney U test, Kruskal-Wallis test and hierarchical multiple regression through SPSS Win Program 18.0 version. Results : 1. OHIP-14 and EQ-5D based on general characteristics showed lower oral health-related quality of life and health-related quality of life on the following cases: women (p=0.004, p<0.001), older (p<0.001, p<0.001), lower scholastic ability (p<0.001, p<0.001), lower average of average spending money (p<0.001, p<0.001), higher number of chronic disease (p<0.001, p<0.001), less drinking (p=0.012, p=0.008), lower perceived oral health and health status (p<0.001, p<0.001) and non smoking showed only EQ-5D (p<0.001). 2. OHIP-14 and EQ-5D based on oral health behavior showed lower oral health-related quality of life and health-related quality of life on the following cases: no periodic oral check-up (p<0.001, p<0.001), less experience of oral health education (p<0.001, p<0.001), horizontal tooth-brushing method(p<0.001, p<0.001) and lower frequency of tooth-brushing showed only OHIP-14 (p=0.042). OHIP-14 and EQ-5D based on oral health status and subjective oral symptom showed lower oral health-related quality of life and health-related quality of life on following cases: number of existing tooth less than 20 (p<0.001, p<0.001), the number of missing teeth more than 9 (p<0.001, p=0.044), DMFT (Decay, Missing, Filling Teeth) index more than 18 (p<0.001, p<0.001), wears denture (p<0.001, p<0.001), edentulous (p<0.001, p=0.002), have xerostomia (p<0.001, p<0.001) and have chewing discomfort (p<0.001, p<0.001). 3. Factors affecting OHIP-14 were gender, age, perceived oral health status, perceived health status, number of existing teeth, dental status, xerostomia and chewing discomfort, and the of reliability (how well it explains) the final model was 48.7%. EQ-5D showed relevance on gender, age, presence of chronic disease, perceived health status, xerostomia, chewing discomfort and oral health-related quality of life, and the reliability of the final model was 42.9%. Conclusions : In order to improve the quality of life of ruralists, oral health needs to be improved or remained by increasing the rate of possession of the existing teeth and preventing the loss of teeth. In order to do so, improvement of accessibility of dental clinic, change of direction from treatment-centered to prevention-centered health care system, development of oral health education program and various oral health care policies which would vitalize continuous oral health care system are considered to be necessary.