• 제목/요약/키워드: Horizontal alignment

검색결과 158건 처리시간 0.024초

스트랩다운 관성항법장치의 각을 이용한 초기전달 정렬기법 (Transfer alignment for strapdown inertial navigation system by angle matching method)

  • 송기원;전창배;김현백
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.29-33
    • /
    • 1993
  • This paper suggests Kalman filter formulation using by precision GINS output angle for SDINS initial transfer alignment of missile. The Kalman filter model was derived from quaternion parameters and the transfer alignment system by angle matching method satisfies azimuth observability in horizontal angular motion. The estimated error of SDINS attitude settles to less 3mrad(1.sigma.) in 200 seconds at proper sea state.

  • PDF

초기 기수각 정보가 필요 없는 SDINS의 운항중 정렬 (In-Flight Alignment of SDINS without Initial Heading Information)

  • 홍현수;이장규;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.524-532
    • /
    • 2002
  • This paper presents a new in-flight alignment method for an SDINS under large initial heading error. To handle large heading error, a new attitude error model is introduced. The attitude errors are divided into heading error and leveling errors using a newly defined horizontal frame. Some navigation error dynamic models are derived from the attitude error model for indirect feedback filtering of the in-flight alignment system. A Kalman filter with Position measurement is designed to estimate navigation errors as the indirect feedback filter Simulation results show that the proposed in-flight alignment method reduces the heading error very quickly from more than 40deg to about 5deg so as to apply a refined navigation filter. The total alignment process including leveling mode and navigation mode in addition to the proposed one allows large initial values not only in heading error but also in leveling errors.

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

초정밀 공구 위치설정 오차의 보정 (Compensation of Ultra-Precision Tool Position for Alignment Error)

  • 박순섭;이기용;김형모;이재설
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.71-75
    • /
    • 2007
  • Geometrical error of ultra-precision machining due to spherical tool alignment error is analyzed. Deviation of spherical edge, ranged several ten micrometers, generates vertical and horizontal error of tool path and affects profile accuracy of machined surface. Simulation of machined error shows effect of tool alignment error and enables to estimate alignment error. This work provides technical insights into the minimizing of geometrical error of ultra-precision machining.

  • PDF

가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구 (A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers)

  • 이인섭
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구 (A Study of Spacecraft Alignment Measurement with Theodolite)

  • 윤용식;박홍철;손영선;최종연
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.105-111
    • /
    • 2003
  • 위성체 정렬은 위성체 조립 및 시험과정에서 중요한 부분이다. 인공위성이 우주궤도상에서 성공적인 임무를 수행하기 위해서는 자세제어 및 탑재체용 부분품들에 대하여 측정허용오차 $0.1^{\circ}{\sim}0.7^{\circ}$의 정밀하고 정확한 측정이 요구되며 정렬된 상태에서의 위성체 좌표계의 정확한 방향좌표를 측정하여 지상에 위치한 위성체 관제부에서 위성체의 자세제어 등에 사용하도록 제공하게 된다. 본 논문에서는 자동시준에 의한 위성체 정렬 측정 이론에 대하여 기술하고 데오도라이트를 사용하여 위성체 정렬을 측정할 수 있는 측정방법 및 그 측정 결과에 대하여 고찰해 보고자 한다.

종곡선/평면곡선 경합여부에 따른 최적평면선형조건 및 승차감 비교 분석 (Comparative Study on Ride Comfort and Optimum Horizontal Curve Conditions for Superimposition of Vertical and Horizontal Curve)

  • 엄주환;최일윤;양신추;이일화;김만철
    • 한국철도학회논문집
    • /
    • 제13권6호
    • /
    • pp.589-594
    • /
    • 2010
  • 철도에서 평면곡선과 종곡선의 경합은 승차감 및 열차의 주행안전성을 저해시키는 원인이 되며, 유지보수비용에도 큰 영향을 미친다. 그러나 철도노선 계획 시 지형조건 및 예기치 않은 환경적 요인에 의해 선형경합이 필요하게 될 경우가 발생된다. 본 연구에서는 종곡선과 평면곡선의 경합이 곡선부에서의 승차감 및 평면곡선의 최적선형조건에 미치는 영향을 파악하고자 하였다. 이를 위해 평면곡선과 종곡선이 경합하였을 경우와 경합하지 않고 평면선형만 있을 경우에 대한 최적캔트량 및 승차감을 비교분석 하였으며, 고속영역에서 선형 경합이 곡선선형조건과 승차감에 미치는 영향을 검토하였다. 그 결과 경합한 경우라도 보정캔트를 부설한다면 승차감 측면에서 평면선형만 부설한 경우와 유사한 조건이 될 수 있음을 알 수 있었다.