• Title/Summary/Keyword: Horizontal Wafer

Search Result 32, Processing Time 0.022 seconds

Effect of Temperature on Growth of Tin Oxide Nanostructures (산화주석 나노구조물의 성장에서 기판 온도의 효과)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2019
  • Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF