• Title/Summary/Keyword: Horizontal Steam Generator

Search Result 18, Processing Time 0.021 seconds

Detection of Foreign Objects Using Bobbin Probe in Eddy Current Test (이물질에 대한 ECT Bobbin Probe 검출 감도)

  • Jung, Hee-Sung;Kweon, Young-Ho;Lee, Dong-Ha;Shin, Wook-Jo;Yim, Chan-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.295-299
    • /
    • 2016
  • Residual foreign objects at the secondary side (top of the tubesheet and tube support plates) of a steam generator are likely to cause a leak by causing wear in the tube. The extent of wear is significantly affected by the material, shape, and size of the foreign object, and the corrosion properties of the tube. The presence of foreign objects at the top of the tubesheet and tube support plates has been identified using remote visual inspection methods such as the foreign object search and retrieval and eddy current test (ECT). The detection of the residual foreign object at the secondary side of a steam generator has limitations that depend on the material properties and the condition of contact with the tube. In this study, which is vertical and horizontal from the upper tubesheet, the corresponding bobbin ECT signals were collected and analyzed to measure its ability to detect foreign objects.

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner (덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bong Jae;Kim, Jinil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A method was developed for analyzing the radiation heat transfer from the duct burner flame to the heat exchanger in a heat recovery steam generator (HRSG) in order to supplement the existing thermal design process. The burner flame and the heat exchanger were considered to be imaginary planes, and the flame temperature, surface, and emissivity were simplified using an engineering approach. Three analysis cases in which the duct burner position and fuel were changed were considered. The calculated flame radiative heat transfer and local flux on the heating surface were compared with those of 3-atomic gas radiation and convection. In all analysis cases, heat transfer by 3-atomic gas radiation was very small. The ratio of the flame radiative heat transfer to the convection heat transfer on the heating surface was estimated to be as high as 8-41%. Moreover, the local heat flux on the heating surface centerline was dominated by flame radiative heat flux.

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

A Study on Heat Transfer Analysis around the Square Heat Source of Interior Solid by Using Finite Element Method (유한요소법에 의한 고체내부의 사각열원 주위 열전도 특성연구)

  • Jang, Jae-Eun;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 1982
  • In this paper the result of heat transfer analysis around the square heat source of interior solid by using the F. E. M is reported. Calculation for temperature distribution and each element was used by F. E. M. the solid is sub-divided into system of equal size triangular shape. These values of temperature distribution will valuable for design of jet engine and steam generator and the results gained are as follow; 1. Calculation by F. E. M is identified with the experiment. 2. Temperature distribution on the horizontal surface is $\theta$=0.698 in model 4 and the other hand $\theta$=0.401 in model 6 for X=16cm. In intermediates surface between heat source and bottom surface, the influence of L is more greater than that of height in the temperature difference. 3. Temperature distribution on the vertical surface for model 2 is resulted strong influence by K. In the case of Y=4cm is identified with $\theta$=0.0790 for K=7 and also $\theta$=0.0036 for K=0.3. In the difference of temperature distribution.

  • PDF